{"title":"Tangent spaces on the trianguline variety at companion points","authors":"Seginus Mowlavi","doi":"10.1016/j.indag.2023.10.007","DOIUrl":null,"url":null,"abstract":"<div><p><span>Many results about the geometry of the trianguline variety have been obtained by Breuil–Hellmann–Schraen. Among them, using geometric methods, they have computed a formula for the dimension of the tangent space of the trianguline variety at dominant crystalline generic points, which has a conjectural generalisation to companion (</span><em>i.e.</em> non-dominant) points. In an earlier work, they proved a weaker form of this formula under the assumption of modularity using arithmetic methods. We prove a generalisation of a result of Bellaïche–Chenevier in <span><math><mi>p</mi></math></span>-adic Hodge theory and use it to extend the arithmetic methods of Breuil–Hellmann–Schraen to a wide class of companion points.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 1","pages":"Pages 181-204"},"PeriodicalIF":0.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001935772300099X","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Many results about the geometry of the trianguline variety have been obtained by Breuil–Hellmann–Schraen. Among them, using geometric methods, they have computed a formula for the dimension of the tangent space of the trianguline variety at dominant crystalline generic points, which has a conjectural generalisation to companion (i.e. non-dominant) points. In an earlier work, they proved a weaker form of this formula under the assumption of modularity using arithmetic methods. We prove a generalisation of a result of Bellaïche–Chenevier in -adic Hodge theory and use it to extend the arithmetic methods of Breuil–Hellmann–Schraen to a wide class of companion points.
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.