Development of a surrogate model for uncertainty quantification of compressor performance due to manufacturing tolerance

IF 1.1 Q4 ENGINEERING, MECHANICAL
Quentin Rendu, Loic Salles
{"title":"Development of a surrogate model for uncertainty quantification of compressor performance due to manufacturing tolerance","authors":"Quentin Rendu, Loic Salles","doi":"10.33737/jgpps/168293","DOIUrl":null,"url":null,"abstract":"In gas turbines and jet engines, stagger angle and tip gap variations between adjacent blades lead to the deterioration of performance. To evaluate the effect of manufacturing tolerance on performance, a CFD-based uncertainty quantification analysis is performed in this work. However, evaluating dozens of thousands of rotor assembly through CFD simulations would be computationally prohibitive. A surrogate model is thus developed to predict compressor performance given an ordered set of manufactured blades. The model is used to predict the influence of tip gap and stagger angle variations on maximum isentropic efficiency. The results confirm that the best arrangement is obtained by minimizing the stagger angle variation between adjacent blades, and by maximizing the tip gap variation. Another finding is that the best arrangement yields the lowest variability, the range of maximum efficiency being 4 times sharper (resp. 2 times) than worst arrangement for stagger angle variations (resp. tip gap variations). Not measuring manufacturing tolerance, or not specifying any strategy for the blade arrangement, lead to variability as large as the worst arrangement.","PeriodicalId":53002,"journal":{"name":"Journal of the Global Power and Propulsion Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Global Power and Propulsion Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33737/jgpps/168293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

In gas turbines and jet engines, stagger angle and tip gap variations between adjacent blades lead to the deterioration of performance. To evaluate the effect of manufacturing tolerance on performance, a CFD-based uncertainty quantification analysis is performed in this work. However, evaluating dozens of thousands of rotor assembly through CFD simulations would be computationally prohibitive. A surrogate model is thus developed to predict compressor performance given an ordered set of manufactured blades. The model is used to predict the influence of tip gap and stagger angle variations on maximum isentropic efficiency. The results confirm that the best arrangement is obtained by minimizing the stagger angle variation between adjacent blades, and by maximizing the tip gap variation. Another finding is that the best arrangement yields the lowest variability, the range of maximum efficiency being 4 times sharper (resp. 2 times) than worst arrangement for stagger angle variations (resp. tip gap variations). Not measuring manufacturing tolerance, or not specifying any strategy for the blade arrangement, lead to variability as large as the worst arrangement.
基于制造公差的压缩机性能不确定性量化替代模型的建立
在燃气轮机和喷气发动机中,相邻叶片之间的交错角和叶尖间隙的变化会导致性能的恶化。为了评估制造公差对性能的影响,本文进行了基于cfd的不确定性量化分析。然而,通过CFD模拟来评估成千上万的转子组件在计算上是令人望而却步的。因此,开发了一个代理模型来预测给定一组订购的制造叶片的压气机性能。利用该模型预测了叶尖间隙和错开角变化对最大等熵效率的影响。结果表明,最大限度地减小相邻叶片间的交错角变化,最大限度地增大叶尖间隙变化,可以获得最佳的布置方式。另一个发现是,最佳的排列方式产生最小的变异性,最高效率的范围是原来的4倍。2倍)比最差安排的交错角度变化(如。尖端间隙变化)。不测量制造公差,或不指定任何策略的叶片安排,导致变异性大到最差的安排。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the Global Power and Propulsion Society
Journal of the Global Power and Propulsion Society Engineering-Industrial and Manufacturing Engineering
CiteScore
2.10
自引率
0.00%
发文量
21
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信