Umutcan OLMUŞ, Yunus Emre GÜZELEL, Kamil NEYFEL ÇERÇI, Orhan BÜYÜKALACA
{"title":"Effect of operating parameters on the performance of rotary desiccant wheel energized by PV/T collectors","authors":"Umutcan OLMUŞ, Yunus Emre GÜZELEL, Kamil NEYFEL ÇERÇI, Orhan BÜYÜKALACA","doi":"10.18186/thermal.1333904","DOIUrl":null,"url":null,"abstract":"The main energy input of a desiccant air conditioning system is the low-quality thermal ener-gy required for regeneration, which can be obtained from waste heat, geothermal resources or solar energy. Regeneration thermal energy can be produced as well as energizing components such as fans, pumps, auxiliary air heaters, and control elements of the system by using pho-tovoltaic-thermal solar collectors (PV/T). In this study, parametric analyzes were performed to investigate the effect of regeneration temperature and air frontal velocity on the tempera-ture and dehumidification performance of a solid silica-gel desiccant wheel and on the wa-ter-cooled PV/T collectors used to provide the regeneration thermal energy. The regeneration temperature was varied between 50 and 70°C, and air frontal velocity between 1.3 and 4.1 m/s. The analyzes show that the dehumidification efficiency increases from 13.94% to 33.04% as regeneration temperature increased from 50°C to 70°C at 1.3 m/s air frontal velocity at which dehumidification efficiency is maximum. At 4.1 m/s air frontal velocity, the required regener-ation thermal energy is maximum and increases from 49.64 kW to 132.48 kW at the same re-generation temperature change. The low regeneration temperature resulted in desirable latent performance and undesirable sensible heat transfer performance in DEW. Finally, considering the whole system, it was concluded that the optimum regeneration air temperature for the performance parameters is 60°C.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1333904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The main energy input of a desiccant air conditioning system is the low-quality thermal ener-gy required for regeneration, which can be obtained from waste heat, geothermal resources or solar energy. Regeneration thermal energy can be produced as well as energizing components such as fans, pumps, auxiliary air heaters, and control elements of the system by using pho-tovoltaic-thermal solar collectors (PV/T). In this study, parametric analyzes were performed to investigate the effect of regeneration temperature and air frontal velocity on the tempera-ture and dehumidification performance of a solid silica-gel desiccant wheel and on the wa-ter-cooled PV/T collectors used to provide the regeneration thermal energy. The regeneration temperature was varied between 50 and 70°C, and air frontal velocity between 1.3 and 4.1 m/s. The analyzes show that the dehumidification efficiency increases from 13.94% to 33.04% as regeneration temperature increased from 50°C to 70°C at 1.3 m/s air frontal velocity at which dehumidification efficiency is maximum. At 4.1 m/s air frontal velocity, the required regener-ation thermal energy is maximum and increases from 49.64 kW to 132.48 kW at the same re-generation temperature change. The low regeneration temperature resulted in desirable latent performance and undesirable sensible heat transfer performance in DEW. Finally, considering the whole system, it was concluded that the optimum regeneration air temperature for the performance parameters is 60°C.
期刊介绍:
Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.