General diffusion processes as limit of time-space Markov chains

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Alexis Anagnostakis, Antoine Lejay, Denis Villemonais
{"title":"General diffusion processes as limit of time-space Markov chains","authors":"Alexis Anagnostakis, Antoine Lejay, Denis Villemonais","doi":"10.1214/22-aap1902","DOIUrl":null,"url":null,"abstract":"We prove the convergence of the law of grid-valued random walks, which can be seen as time-space Markov chains, to the law of a general diffusion process. This includes processes with sticky features, reflecting or absorbing boundaries and skew behavior. We prove that the convergence occurs at any rate strictly inferior to (1/4)∧(1/p) in terms of the maximum cell size of the grid, for any p-Wasserstein distance. We also show that it is possible to achieve any rate strictly inferior to (1/2)∧(2/p) if the grid is adapted to the speed measure of the diffusion, which is optimal for p≤4. This result allows us to set up asymptotically optimal approximation schemes for general diffusion processes. Last, we experiment numerically on diffusions that exhibit various features.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"55 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1902","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

We prove the convergence of the law of grid-valued random walks, which can be seen as time-space Markov chains, to the law of a general diffusion process. This includes processes with sticky features, reflecting or absorbing boundaries and skew behavior. We prove that the convergence occurs at any rate strictly inferior to (1/4)∧(1/p) in terms of the maximum cell size of the grid, for any p-Wasserstein distance. We also show that it is possible to achieve any rate strictly inferior to (1/2)∧(2/p) if the grid is adapted to the speed measure of the diffusion, which is optimal for p≤4. This result allows us to set up asymptotically optimal approximation schemes for general diffusion processes. Last, we experiment numerically on diffusions that exhibit various features.
作为时空马尔可夫链极限的一般扩散过程
我们证明了网格值随机游走(可看作是时空马尔可夫链)规律对一般扩散过程规律的收敛性。这包括具有粘性特征、反射或吸收边界和倾斜行为的过程。我们证明了对于任意p- wasserstein距离,对于网格的最大单元尺寸,收敛发生在严格低于(1/4)∧(1/p)的任何速率下。我们还证明,如果网格适合于扩散的速度测量,则可以达到严格低于(1/2)∧(2/p)的任何速率,这在p≤4时是最优的。这一结果使我们能够建立一般扩散过程的渐近最优逼近格式。最后,我们对表现出各种特征的扩散进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信