Alexis Anagnostakis, Antoine Lejay, Denis Villemonais
{"title":"General diffusion processes as limit of time-space Markov chains","authors":"Alexis Anagnostakis, Antoine Lejay, Denis Villemonais","doi":"10.1214/22-aap1902","DOIUrl":null,"url":null,"abstract":"We prove the convergence of the law of grid-valued random walks, which can be seen as time-space Markov chains, to the law of a general diffusion process. This includes processes with sticky features, reflecting or absorbing boundaries and skew behavior. We prove that the convergence occurs at any rate strictly inferior to (1/4)∧(1/p) in terms of the maximum cell size of the grid, for any p-Wasserstein distance. We also show that it is possible to achieve any rate strictly inferior to (1/2)∧(2/p) if the grid is adapted to the speed measure of the diffusion, which is optimal for p≤4. This result allows us to set up asymptotically optimal approximation schemes for general diffusion processes. Last, we experiment numerically on diffusions that exhibit various features.","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":"55 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aap1902","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3
Abstract
We prove the convergence of the law of grid-valued random walks, which can be seen as time-space Markov chains, to the law of a general diffusion process. This includes processes with sticky features, reflecting or absorbing boundaries and skew behavior. We prove that the convergence occurs at any rate strictly inferior to (1/4)∧(1/p) in terms of the maximum cell size of the grid, for any p-Wasserstein distance. We also show that it is possible to achieve any rate strictly inferior to (1/2)∧(2/p) if the grid is adapted to the speed measure of the diffusion, which is optimal for p≤4. This result allows us to set up asymptotically optimal approximation schemes for general diffusion processes. Last, we experiment numerically on diffusions that exhibit various features.
期刊介绍:
The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.