Sentiment Analysis of Hybrid Network Model Based on Attention

IF 0.6 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Hongzhan Zhen, Wenqian Shang, Wanyu Zhang
{"title":"Sentiment Analysis of Hybrid Network Model Based on Attention","authors":"Hongzhan Zhen, Wenqian Shang, Wanyu Zhang","doi":"10.4018/ijsi.327364","DOIUrl":null,"url":null,"abstract":"The existing text sentiment analysis models based on deep learning and neural network usually have problems such as incomplete text feature extraction and failure to consider the impact of key information on text sentiment tendency. Based on the parallel hybrid network and the two-way attention mechanism, an improved text sentiment analysis model is proposed. The model first takes the word vector trained by the BERT language model as the input, and then extracts the global and local features of the context simultaneously through the parallel hybrid neural network constructed by the Convolution Neural Network (CNN) and The Bidirectional Gated Recurrent Unit (BiGRU), so as to improve the feature extraction ability of the model. It also integrates the dual-way attention mechanism to strengthen the key information in the global feature and local feature, and the feature vectors obtained by feature fusion are used for sentiment analysis.","PeriodicalId":55938,"journal":{"name":"International Journal of Software Innovation","volume":"30 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Software Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijsi.327364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The existing text sentiment analysis models based on deep learning and neural network usually have problems such as incomplete text feature extraction and failure to consider the impact of key information on text sentiment tendency. Based on the parallel hybrid network and the two-way attention mechanism, an improved text sentiment analysis model is proposed. The model first takes the word vector trained by the BERT language model as the input, and then extracts the global and local features of the context simultaneously through the parallel hybrid neural network constructed by the Convolution Neural Network (CNN) and The Bidirectional Gated Recurrent Unit (BiGRU), so as to improve the feature extraction ability of the model. It also integrates the dual-way attention mechanism to strengthen the key information in the global feature and local feature, and the feature vectors obtained by feature fusion are used for sentiment analysis.
基于注意力的混合网络模型情感分析
现有的基于深度学习和神经网络的文本情感分析模型通常存在文本特征提取不完整、未考虑关键信息对文本情感倾向的影响等问题。基于并行混合网络和双向注意机制,提出了一种改进的文本情感分析模型。该模型首先以BERT语言模型训练出的词向量作为输入,然后通过卷积神经网络(CNN)和双向门控循环单元(BiGRU)构建的并行混合神经网络同时提取上下文的全局和局部特征,从而提高模型的特征提取能力。该算法还集成了双向关注机制,增强了全局特征和局部特征中的关键信息,并将特征融合得到的特征向量用于情感分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Software Innovation
International Journal of Software Innovation COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
1.40
自引率
0.00%
发文量
118
期刊介绍: The International Journal of Software Innovation (IJSI) covers state-of-the-art research and development in all aspects of evolutionary and revolutionary ideas pertaining to software systems and their development. The journal publishes original papers on both theory and practice that reflect and accommodate the fast-changing nature of daily life. Topics of interest include not only application-independent software systems, but also application-specific software systems like healthcare, education, energy, and entertainment software systems, as well as techniques and methodologies for modeling, developing, validating, maintaining, and reengineering software systems and their environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信