Friction Saturated Limit Cycle Oscillations - Test Rig Design and Validation of Numerical Prediction Methods

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Stefan Schwarz, Johannes Reil, Johann Gross, Andreas Hartung, David Rittinger, Malte Krack
{"title":"Friction Saturated Limit Cycle Oscillations - Test Rig Design and Validation of Numerical Prediction Methods","authors":"Stefan Schwarz, Johannes Reil, Johann Gross, Andreas Hartung, David Rittinger, Malte Krack","doi":"10.1115/1.4063769","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, an experimental test rig for friction saturated limit cycle oscillations is proposed to provide a validation basis for corresponding numerical methods. Having in mind the application of turbine blades, an instrumented beam-like structure equipped with an adjustable velocity feedback loop and dry frictional contacts is designed and investigated. After dimensioning the test rig by means of a simplified one dimensional beam model and time domain simulations, the specific requirements of limit cycle oscillations for the design of the frictional contact, the velocity feedback loop and the excitation system are discussed and possible solutions are presented. Also appropriate measuring principles and evaluation techniques are assessed. After commissioning of the test rig, the influence of the negative damping and the normal contact force on the limit cycle oscillations is measured and the practical stability is investigated. The test rig shows linear dynamics for sticking contact and highly repeatable limit cycles. The measured results are discussed regarding the consistency with theory and compared to the predictions of a three dimensional reduced order model solved in frequency domain by the harmonic balance solver OrAgL. It is demonstrated that the numerical modeling strategy is able to accurately reproduce the measured limit cycle oscillations, which stabilized for different contact normal forces and self-excitation levels.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063769","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, an experimental test rig for friction saturated limit cycle oscillations is proposed to provide a validation basis for corresponding numerical methods. Having in mind the application of turbine blades, an instrumented beam-like structure equipped with an adjustable velocity feedback loop and dry frictional contacts is designed and investigated. After dimensioning the test rig by means of a simplified one dimensional beam model and time domain simulations, the specific requirements of limit cycle oscillations for the design of the frictional contact, the velocity feedback loop and the excitation system are discussed and possible solutions are presented. Also appropriate measuring principles and evaluation techniques are assessed. After commissioning of the test rig, the influence of the negative damping and the normal contact force on the limit cycle oscillations is measured and the practical stability is investigated. The test rig shows linear dynamics for sticking contact and highly repeatable limit cycles. The measured results are discussed regarding the consistency with theory and compared to the predictions of a three dimensional reduced order model solved in frequency domain by the harmonic balance solver OrAgL. It is demonstrated that the numerical modeling strategy is able to accurately reproduce the measured limit cycle oscillations, which stabilized for different contact normal forces and self-excitation levels.
摩擦饱和极限循环振荡-试验台设计和数值预测方法的验证
摘要本文建立了摩擦饱和极限环振荡实验试验台,为相应的数值方法提供验证依据。考虑到涡轮叶片的应用,设计并研究了一种带有可调速度反馈回路和干摩擦触点的仪表式梁状结构。通过简化的一维梁模型和时域仿真对试验台进行了尺寸确定,讨论了极限环振荡对摩擦接触、速度反馈回路和励磁系统设计的具体要求,并提出了可能的解决方案。此外,还评估了适当的测量原则和评估技术。试验台架投入使用后,测量了负阻尼和法向接触力对极限环振荡的影响,并对其实际稳定性进行了研究。该试验台具有粘接和高度可重复极限循环的线性动力学特性。讨论了测量结果与理论的一致性,并与谐波平衡求解器OrAgL在频域求解的三维降阶模型的预测结果进行了比较。结果表明,该数值模拟策略能够准确再现所测极限环振荡,并在不同接触法向力和自激水平下保持稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信