{"title":"Non-Destructive Inspection of Hot Corrosion Damage On Internal Surfaces of Turbine Blades","authors":"Justin Kuipers, Kevin Wiens","doi":"10.1115/1.4063770","DOIUrl":null,"url":null,"abstract":"Abstract Two non-destructive techniques for the identification of hot corrosion damage on internal surfaces were investigated: magnetic permeability measurements and x-ray computed tomography (CT). A group of sixty-one Solar Titan 130 stage 1 blades which were known to have hot corrosion damage on the internal surfaces at a specific location were used for the investigation. X-ray CT was able to accurately identify the presence of hot corrosion as well as the extent to which it had progressed through the wall at the location of interest. The magnetic permeability technique was found to accurately identify whether hot corrosion damage had occurred at the location of interest, but could not as accurately determine the extent to which the damage had progressed through the wall. The results of the non-destructive testing were validated by destructive examination of some blades. The non-destructive testing methods evaluated through the study were able to determine the presence and extent of localized hot corrosion damage on internal surfaces, allowing for higher repair yields.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063770","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Two non-destructive techniques for the identification of hot corrosion damage on internal surfaces were investigated: magnetic permeability measurements and x-ray computed tomography (CT). A group of sixty-one Solar Titan 130 stage 1 blades which were known to have hot corrosion damage on the internal surfaces at a specific location were used for the investigation. X-ray CT was able to accurately identify the presence of hot corrosion as well as the extent to which it had progressed through the wall at the location of interest. The magnetic permeability technique was found to accurately identify whether hot corrosion damage had occurred at the location of interest, but could not as accurately determine the extent to which the damage had progressed through the wall. The results of the non-destructive testing were validated by destructive examination of some blades. The non-destructive testing methods evaluated through the study were able to determine the presence and extent of localized hot corrosion damage on internal surfaces, allowing for higher repair yields.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.