Impact Strength for 3D-Printed PA6 Polymer Composites under Temperature Changes

IF 3.3 Q2 ENGINEERING, MANUFACTURING
Jorge Guillermo Díaz-Rodríguez, Alberto David Pertuz-Comas, Oscar Rodolfo Bohórquez-Becerra
{"title":"Impact Strength for 3D-Printed PA6 Polymer Composites under Temperature Changes","authors":"Jorge Guillermo Díaz-Rodríguez, Alberto David Pertuz-Comas, Oscar Rodolfo Bohórquez-Becerra","doi":"10.3390/jmmp7050178","DOIUrl":null,"url":null,"abstract":"This paper shows how temperature influences impact energy for continuous fiber additively manufactured (AM) polymer matrix composites. AM composites were fabricated with a nylon-based matrix and four continuous reinforcements: fiberglass, high-temperature fiberglass (HSHT), Kevlar, and carbon. The tested temperatures ranged from −40 to 90 °C. The chosen printed configuration for the lattice structure and fiber volume was the configuration that was found to perform the best in the literature, with a volumetric fiber content of 24.2%. Impact tests showed that the best response was fiberglass, HSHT, Kevlar, and carbon, in that order. The impact resistance was lowered at temperatures below ambient temperatures and above 50 °C. Additionally, each material’s impact energy was adjusted to third-degree polynomials to model results, with correlation factors above 92%. Finally, the failure analysis showed the damage mechanisms of matrix cracking, delamination in the printing direction, fiber tearing, and fiber pulling as failure mechanisms.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":"58 1","pages":"0"},"PeriodicalIF":3.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp7050178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 2

Abstract

This paper shows how temperature influences impact energy for continuous fiber additively manufactured (AM) polymer matrix composites. AM composites were fabricated with a nylon-based matrix and four continuous reinforcements: fiberglass, high-temperature fiberglass (HSHT), Kevlar, and carbon. The tested temperatures ranged from −40 to 90 °C. The chosen printed configuration for the lattice structure and fiber volume was the configuration that was found to perform the best in the literature, with a volumetric fiber content of 24.2%. Impact tests showed that the best response was fiberglass, HSHT, Kevlar, and carbon, in that order. The impact resistance was lowered at temperatures below ambient temperatures and above 50 °C. Additionally, each material’s impact energy was adjusted to third-degree polynomials to model results, with correlation factors above 92%. Finally, the failure analysis showed the damage mechanisms of matrix cracking, delamination in the printing direction, fiber tearing, and fiber pulling as failure mechanisms.
温度变化下3d打印PA6聚合物复合材料的冲击强度
研究了温度对连续纤维增材制造(AM)聚合物基复合材料冲击能的影响。AM复合材料由尼龙基基体和四种连续增强材料制成:玻璃纤维、高温玻璃纤维(HSHT)、凯夫拉尔和碳。测试温度范围为- 40至90°C。所选择的晶格结构和纤维体积的印刷构型是文献中表现最好的构型,其体积纤维含量为24.2%。冲击试验表明,最佳响应是玻璃纤维,HSHT,凯夫拉尔和碳,依次。在低于环境温度和高于50℃的温度下,抗冲击性降低。此外,每种材料的冲击能被调整为三次多项式与模型结果,相关系数在92%以上。最后,通过失效分析得出了基体开裂、打印方向剥离、纤维撕裂和纤维拉扯为破坏机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Manufacturing and Materials Processing
Journal of Manufacturing and Materials Processing Engineering-Industrial and Manufacturing Engineering
CiteScore
5.10
自引率
6.20%
发文量
129
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信