SportsTables: A New Corpus for Semantic Type Detection (Extended Version)

Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig
{"title":"SportsTables: A New Corpus for Semantic Type Detection (Extended Version)","authors":"Sven Langenecker, Christoph Sturm, Christian Schalles, Carsten Binnig","doi":"10.1007/s13222-023-00457-y","DOIUrl":null,"url":null,"abstract":"Abstract Table corpora such as VizNet or TURL which contain annotated semantic types per column are important to build machine learning models for the task of automatic semantic type detection. However, there is a huge discrepancy between corpora and real-world data lakes since they contain a huge fraction of numerical data which are not present in existing corpora. Hence, in this paper, we introduce a new corpus that contains a much higher proportion of numerical columns than existing corpora. To reflect the distribution in real-world data lakes, our corpus SportsTables has on average approx. 86% numerical columns, posing new challenges to existing semantic type detection models which have mainly targeted non-numerical columns so far. To demonstrate this effect, we show in this extended version paper of [18] the results of an extensive study using four different state-of-the-art approaches for semantic type detection on our new corpus. Overall, the results demonstrate significant performance differences in predicting semantic types for textual and numerical data.","PeriodicalId":72771,"journal":{"name":"Datenbank-Spektrum : Zeitschrift fur Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft fur Informatik e.V","volume":"223 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Datenbank-Spektrum : Zeitschrift fur Datenbanktechnologie : Organ der Fachgruppe Datenbanken der Gesellschaft fur Informatik e.V","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13222-023-00457-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Table corpora such as VizNet or TURL which contain annotated semantic types per column are important to build machine learning models for the task of automatic semantic type detection. However, there is a huge discrepancy between corpora and real-world data lakes since they contain a huge fraction of numerical data which are not present in existing corpora. Hence, in this paper, we introduce a new corpus that contains a much higher proportion of numerical columns than existing corpora. To reflect the distribution in real-world data lakes, our corpus SportsTables has on average approx. 86% numerical columns, posing new challenges to existing semantic type detection models which have mainly targeted non-numerical columns so far. To demonstrate this effect, we show in this extended version paper of [18] the results of an extensive study using four different state-of-the-art approaches for semantic type detection on our new corpus. Overall, the results demonstrate significant performance differences in predicting semantic types for textual and numerical data.
sportstable:一个新的语义类型检测语料库(扩展版)
表语料库(如VizNet或TURL)每列包含注释的语义类型,对于构建机器学习模型来完成自动语义类型检测任务非常重要。然而,语料库与现实世界的数据湖之间存在巨大的差异,因为它们包含了大量现有语料库中不存在的数值数据。因此,在本文中,我们引入了一个新的语料库,它包含比现有语料库更高比例的数字列。为了反映真实世界数据湖中的分布,我们的语料库sportstabables平均约为。86%的数字列,对现有的主要针对非数字列的语义类型检测模型提出了新的挑战。为了证明这种效果,我们在[18]的这篇扩展版论文中展示了一项广泛研究的结果,该研究使用了四种不同的最先进的方法在我们的新语料库上进行语义类型检测。总体而言,结果表明在预测文本和数字数据的语义类型方面存在显著的性能差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信