A decision-tree-based measure–correlate–predict approach for peak wind gust estimation from a global reanalysis dataset

IF 3.6 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Serkan Kartal, Sukanta Basu, Simon J. Watson
{"title":"A decision-tree-based measure–correlate–predict approach for peak wind gust estimation from a global reanalysis dataset","authors":"Serkan Kartal, Sukanta Basu, Simon J. Watson","doi":"10.5194/wes-8-1533-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Peak wind gust (Wp) is a crucial meteorological variable for wind farm planning and operations. However, for many wind farm sites, there is a dearth of on-site measurements of Wp. In this paper, we propose a machine-learning approach (called INTRIGUE, decIsioN-TRee-based wInd GUst Estimation) that utilizes numerous inputs from a public-domain reanalysis dataset and, in turn, generates multi-year, site-specific Wp series. Through a systematic feature importance study, we also identify the most relevant meteorological variables for Wp estimation. The INTRIGUE approach outperforms the baseline predictions for all wind gust conditions. However, the performance of this proposed approach and the baselines for extreme conditions (i.e., Wp>20 m s−1) is less satisfactory.","PeriodicalId":46540,"journal":{"name":"Wind Energy Science","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Energy Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/wes-8-1533-2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Peak wind gust (Wp) is a crucial meteorological variable for wind farm planning and operations. However, for many wind farm sites, there is a dearth of on-site measurements of Wp. In this paper, we propose a machine-learning approach (called INTRIGUE, decIsioN-TRee-based wInd GUst Estimation) that utilizes numerous inputs from a public-domain reanalysis dataset and, in turn, generates multi-year, site-specific Wp series. Through a systematic feature importance study, we also identify the most relevant meteorological variables for Wp estimation. The INTRIGUE approach outperforms the baseline predictions for all wind gust conditions. However, the performance of this proposed approach and the baselines for extreme conditions (i.e., Wp>20 m s−1) is less satisfactory.
基于决策树的测量相关预测方法估算全球再分析数据集的峰值阵风
摘要峰值阵风(Wp)是风电场规划和运行的重要气象变量。然而,对于许多风力发电场,缺乏Wp的现场测量。在本文中,我们提出了一种机器学习方法(称为“阴谋”,基于决策树的阵风估计),该方法利用来自公共领域再分析数据集的大量输入,进而生成多年的、特定地点的Wp系列。通过系统的特征重要性研究,我们还确定了与Wp估算最相关的气象变量。阴谋方法优于所有阵风条件的基线预测。然而,该方法的性能和极端条件(即Wp>20 m s−1)的基线不太令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wind Energy Science
Wind Energy Science GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY-
CiteScore
6.90
自引率
27.50%
发文量
115
审稿时长
28 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信