{"title":"Pre-compensation of Friction for CNC Machine Tools through Constructing a Nonlinear Model Predictive Scheme","authors":"Qunbao Xiao, Min Wan, Xuebin Qin","doi":"10.1186/s10033-023-00946-x","DOIUrl":null,"url":null,"abstract":"Abstract Nonlinear friction is a dominant factor affecting the control accuracy of CNC machine tools. This paper proposes a friction pre-compensation method for CNC machine tools through constructing a nonlinear model predictive scheme. The nonlinear friction-induced tracking error is firstly modeled and then utilized to establish the nonlinear model predictive scheme, which is subsequently used to optimize the compensation signal by treating the friction-induced tracking error as the optimization objective. During the optimization procedure, the derivative of compensation signal is constrained to avoid vibration of machine tools. In contrast to other existing approaches, the proposed method only needs the parameters of Stribeck friction model and an additional tuning parameter, while finely identifying the parameters related to the pre-sliding phenomenon is not required. As a result, it greatly facilitates the practical applicability. Both air cutting and real cutting experiments conducted on an in-house developed open-architecture CNC machine tool prove that the proposed method can reduce the tracking errors by more than 56%, and reduce the contour errors by more than 50%.","PeriodicalId":10115,"journal":{"name":"Chinese Journal of Mechanical Engineering","volume":"15 1","pages":"0"},"PeriodicalIF":4.5000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s10033-023-00946-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Nonlinear friction is a dominant factor affecting the control accuracy of CNC machine tools. This paper proposes a friction pre-compensation method for CNC machine tools through constructing a nonlinear model predictive scheme. The nonlinear friction-induced tracking error is firstly modeled and then utilized to establish the nonlinear model predictive scheme, which is subsequently used to optimize the compensation signal by treating the friction-induced tracking error as the optimization objective. During the optimization procedure, the derivative of compensation signal is constrained to avoid vibration of machine tools. In contrast to other existing approaches, the proposed method only needs the parameters of Stribeck friction model and an additional tuning parameter, while finely identifying the parameters related to the pre-sliding phenomenon is not required. As a result, it greatly facilitates the practical applicability. Both air cutting and real cutting experiments conducted on an in-house developed open-architecture CNC machine tool prove that the proposed method can reduce the tracking errors by more than 56%, and reduce the contour errors by more than 50%.
期刊介绍:
Chinese Journal of Mechanical Engineering (CJME) was launched in 1988. It is a peer-reviewed journal under the govern of China Association for Science and Technology (CAST) and sponsored by Chinese Mechanical Engineering Society (CMES).
The publishing scopes of CJME follow with:
Mechanism and Robotics, including but not limited to
-- Innovative Mechanism Design
-- Mechanical Transmission
-- Robot Structure Design and Control
-- Applications for Robotics (e.g., Industrial Robot, Medical Robot, Service Robot…)
-- Tri-Co Robotics
Intelligent Manufacturing Technology, including but not limited to
-- Innovative Industrial Design
-- Intelligent Machining Process
-- Artificial Intelligence
-- Micro- and Nano-manufacturing
-- Material Increasing Manufacturing
-- Intelligent Monitoring Technology
-- Machine Fault Diagnostics and Prognostics
Advanced Transportation Equipment, including but not limited to
-- New Energy Vehicle Technology
-- Unmanned Vehicle
-- Advanced Rail Transportation
-- Intelligent Transport System
Ocean Engineering Equipment, including but not limited to
--Equipment for Deep-sea Exploration
-- Autonomous Underwater Vehicle
Smart Material, including but not limited to
--Special Metal Functional Materials
--Advanced Composite Materials
--Material Forming Technology.