Pseudoperiodic Words and a Question of Shevelev

Pub Date : 2023-10-16 DOI:10.46298/dmtcs.9919
Joseph Meleshko, Pascal Ochem, Jeffrey Shallit, Sonja Linghui Shan
{"title":"Pseudoperiodic Words and a Question of Shevelev","authors":"Joseph Meleshko, Pascal Ochem, Jeffrey Shallit, Sonja Linghui Shan","doi":"10.46298/dmtcs.9919","DOIUrl":null,"url":null,"abstract":"We generalize the familiar notion of periodicity in sequences to a new kind of pseudoperiodicity, and we prove some basic results about it. We revisit the results of a 2012 paper of Shevelev and reprove his results in a simpler and more unified manner, and provide a complete answer to one of his previously unresolved questions. We consider finding words with specific pseudoperiod and having the smallest possible critical exponent. Finally, we consider the problem of determining whether a finite word is pseudoperiodic of a given size, and show that it is NP-complete.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.9919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We generalize the familiar notion of periodicity in sequences to a new kind of pseudoperiodicity, and we prove some basic results about it. We revisit the results of a 2012 paper of Shevelev and reprove his results in a simpler and more unified manner, and provide a complete answer to one of his previously unresolved questions. We consider finding words with specific pseudoperiod and having the smallest possible critical exponent. Finally, we consider the problem of determining whether a finite word is pseudoperiodic of a given size, and show that it is NP-complete.
分享
查看原文
伪周期词与舍夫列夫问题
将序列中周期的概念推广为一类新的伪周期,并证明了它的一些基本结果。我们重新审视了舍夫列夫2012年的一篇论文的结果,并以一种更简单、更统一的方式对他的结果进行了修正,并为他之前未解决的一个问题提供了一个完整的答案。我们考虑寻找具有特定伪周期并具有最小可能临界指数的词。最后,我们考虑了确定一个有限字是否是给定大小的伪周期的问题,并证明了它是np完全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信