The upper tail problem for induced 4‐cycles in sparse random graphs

IF 0.9 3区 数学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Asaf Cohen Antonir
{"title":"The upper tail problem for induced 4‐cycles in sparse random graphs","authors":"Asaf Cohen Antonir","doi":"10.1002/rsa.21187","DOIUrl":null,"url":null,"abstract":"Abstract Building on the techniques from the breakthrough paper of Harel, Mousset and Samotij, which solved the upper tail problem for cliques, we compute the asymptotics of the upper tail for the number of induced copies of the 4‐cycle in the binomial random graph . We observe a new phenomenon in the theory of large deviations of subgraph counts. This phenomenon is that, in a certain (large) range of , the upper tail of the induced 4‐cycle does not admit a naive mean‐field approximation.","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":"41 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/rsa.21187","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract Building on the techniques from the breakthrough paper of Harel, Mousset and Samotij, which solved the upper tail problem for cliques, we compute the asymptotics of the upper tail for the number of induced copies of the 4‐cycle in the binomial random graph . We observe a new phenomenon in the theory of large deviations of subgraph counts. This phenomenon is that, in a certain (large) range of , the upper tail of the induced 4‐cycle does not admit a naive mean‐field approximation.
稀疏随机图中诱导4 -环的上尾问题
摘要:在Harel, Mousset和Samotij的突破性论文中解决了团的上尾问题的基础上,我们计算了二项随机图中4 -环的诱导拷贝数的上尾渐近性。在子图计数大偏差理论中,我们观察到一个新现象。这种现象是,在一定(大)范围内,诱导的4周期的上尾不允许朴素平均场近似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Structures & Algorithms
Random Structures & Algorithms 数学-计算机:软件工程
CiteScore
2.50
自引率
10.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness. Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信