{"title":"Dynamical analysis on stochastic two-species models","authors":"Guangbin Wang, Jingliang Lv, Xiaoling Zou","doi":"10.1080/00036811.2023.2270214","DOIUrl":null,"url":null,"abstract":"AbstractIn this paper, we study three stochastic two-species models. We construct the stochastic models corresponding to its deterministic model by introducing stochastic noise into the equations. For the first model, we show that the system has a unique global solution starting from the positive initial value. In addition, we discuss the extinction and the existence of stationary distribution under some conditions. For the second system, we explore the existence and uniqueness of the solution. Then we obtain sufficient conditions for global asymptotic stability of the equilibrium point and the positive recurrence of solution. For the last model, the existence and uniqueness of solution, the sufficient conditions for extinction and asymptotic stability and the positive recurrence of solution and weak persistence are derived. And numerical simulations are performed to support our results.Keywords: Stabilityextinctionstationary distributionpositive recurrenceweak persistenceMathematics Subject Classifications: 60G1560G4460G5260H10 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research was supported by Natural Science Foundation of Shandong Province, China [grant number ZR2020MA038] and [grant number ZR2020MA037].","PeriodicalId":55507,"journal":{"name":"Applicable Analysis","volume":"218 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applicable Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00036811.2023.2270214","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractIn this paper, we study three stochastic two-species models. We construct the stochastic models corresponding to its deterministic model by introducing stochastic noise into the equations. For the first model, we show that the system has a unique global solution starting from the positive initial value. In addition, we discuss the extinction and the existence of stationary distribution under some conditions. For the second system, we explore the existence and uniqueness of the solution. Then we obtain sufficient conditions for global asymptotic stability of the equilibrium point and the positive recurrence of solution. For the last model, the existence and uniqueness of solution, the sufficient conditions for extinction and asymptotic stability and the positive recurrence of solution and weak persistence are derived. And numerical simulations are performed to support our results.Keywords: Stabilityextinctionstationary distributionpositive recurrenceweak persistenceMathematics Subject Classifications: 60G1560G4460G5260H10 Disclosure statementNo potential conflict of interest was reported by the author(s).Additional informationFundingThis research was supported by Natural Science Foundation of Shandong Province, China [grant number ZR2020MA038] and [grant number ZR2020MA037].
期刊介绍:
Applicable Analysis is concerned primarily with analysis that has application to scientific and engineering problems. Papers should indicate clearly an application of the mathematics involved. On the other hand, papers that are primarily concerned with modeling rather than analysis are outside the scope of the journal
General areas of analysis that are welcomed contain the areas of differential equations, with emphasis on PDEs, and integral equations, nonlinear analysis, applied functional analysis, theoretical numerical analysis and approximation theory. Areas of application, for instance, include the use of homogenization theory for electromagnetic phenomena, acoustic vibrations and other problems with multiple space and time scales, inverse problems for medical imaging and geophysics, variational methods for moving boundary problems, convex analysis for theoretical mechanics and analytical methods for spatial bio-mathematical models.