On the ergodicity of unitary frame flows on Kähler manifolds

Pub Date : 2023-10-16 DOI:10.1017/etds.2023.72
MIHAJLO CEKIĆ, THIBAULT LEFEUVRE, ANDREI MOROIANU, UWE SEMMELMANN
{"title":"On the ergodicity of unitary frame flows on Kähler manifolds","authors":"MIHAJLO CEKIĆ, THIBAULT LEFEUVRE, ANDREI MOROIANU, UWE SEMMELMANN","doi":"10.1017/etds.2023.72","DOIUrl":null,"url":null,"abstract":"Abstract Let $(M,g,J)$ be a closed Kähler manifold with negative sectional curvature and complex dimension $m := \\dim _{\\mathbb {C}} M \\geq 2$ . In this article, we study the unitary frame flow , that is, the restriction of the frame flow to the principal $\\mathrm {U}(m)$ -bundle $F_{\\mathbb {C}}M$ of unitary frames. We show that if $m \\geq 6$ is even and $m \\neq 28$ , there exists $\\unicode{x3bb} (m) \\in (0, 1)$ such that if $(M, g)$ has negative $\\unicode{x3bb} (m)$ -pinched holomorphic sectional curvature, then the unitary frame flow is ergodic and mixing. The constants $\\unicode{x3bb} (m)$ satisfy $\\unicode{x3bb} (6) = 0.9330...$ , $\\lim _{m \\to +\\infty } \\unicode{x3bb} (m) = {11}/{12} = 0.9166...$ , and $m \\mapsto \\unicode{x3bb} (m)$ is decreasing. This extends to the even-dimensional case the results of Brin and Gromov [On the ergodicity of frame flows. Invent. Math. 60 (1) (1980), 1–7] who proved ergodicity of the unitary frame flow on negatively curved compact Kähler manifolds of odd complex dimension.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/etds.2023.72","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Let $(M,g,J)$ be a closed Kähler manifold with negative sectional curvature and complex dimension $m := \dim _{\mathbb {C}} M \geq 2$ . In this article, we study the unitary frame flow , that is, the restriction of the frame flow to the principal $\mathrm {U}(m)$ -bundle $F_{\mathbb {C}}M$ of unitary frames. We show that if $m \geq 6$ is even and $m \neq 28$ , there exists $\unicode{x3bb} (m) \in (0, 1)$ such that if $(M, g)$ has negative $\unicode{x3bb} (m)$ -pinched holomorphic sectional curvature, then the unitary frame flow is ergodic and mixing. The constants $\unicode{x3bb} (m)$ satisfy $\unicode{x3bb} (6) = 0.9330...$ , $\lim _{m \to +\infty } \unicode{x3bb} (m) = {11}/{12} = 0.9166...$ , and $m \mapsto \unicode{x3bb} (m)$ is decreasing. This extends to the even-dimensional case the results of Brin and Gromov [On the ergodicity of frame flows. Invent. Math. 60 (1) (1980), 1–7] who proved ergodicity of the unitary frame flow on negatively curved compact Kähler manifolds of odd complex dimension.
分享
查看原文
Kähler流形上酉坐标系流的遍历性
摘要设$(M,g,J)$为一个负截面曲率、复维$m := \dim _{\mathbb {C}} M \geq 2$的封闭Kähler流形。本文研究了酉框架流,即框架流对酉框架的主$\mathrm {U}(m)$ -束$F_{\mathbb {C}}M$的约束。证明了如果$m \geq 6$是偶数且$m \neq 28$,则存在$\unicode{x3bb} (m) \in (0, 1)$,使得如果$(M, g)$具有负的$\unicode{x3bb} (m)$缩全纯截面曲率,则幺正框架流是遍历混合流。常数$\unicode{x3bb} (m)$满足$\unicode{x3bb} (6) = 0.9330...$$\lim _{m \to +\infty } \unicode{x3bb} (m) = {11}/{12} = 0.9166...$, $m \mapsto \unicode{x3bb} (m)$在减小。这将Brin和Gromov关于框架流遍历性的结果扩展到偶数维情况。发明。数学,60(1)(1980),1 - 7],他证明了负弯曲紧致Kähler奇复维流形上酉框架流的遍历性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信