Updating Ortho- and Metachromatic Acridine Orange Fluorescence in Cytochemical Chromosome Staining: A Proposal for Understanding Its Differential Fluorescence on Double- and Single-Stranded Nucleic Acids Substrates Based on Intercalation

IF 3.7 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Juan C. Stockert, Alfonso Blázquez-Castro
{"title":"Updating Ortho- and Metachromatic Acridine Orange Fluorescence in Cytochemical Chromosome Staining: A Proposal for Understanding Its Differential Fluorescence on Double- and Single-Stranded Nucleic Acids Substrates Based on Intercalation","authors":"Juan C. Stockert, Alfonso Blázquez-Castro","doi":"10.3390/chemosensors11100540","DOIUrl":null,"url":null,"abstract":"Many fluorophores display interesting features that make them useful biological labels and chemosensors, in particular in Cell Biology. Changes in the absorption-emission spectra (ortho- and metachromasia) are accounted among them. Acridine orange (AO) is one such fluorochromes that shows a prototypical orthochromatic vs. metachromatic behavior depending on its concentration and binding mode to different cellular substrates. Here, we revisit the differential AO fluorescence that occurs in selected biological examples, which allows for the identification of single-stranded or double-stranded nucleic acids. Although known for long, the ultimate reason for this phenomenon has not been properly advanced. We provide a potential molecular mechanism that adequately accounts for the different aspects of the phenomenon. This theoretical mechanism implies a difference in the degree of overlap of excited state orbitals whenever AO molecules are interacting with a single-stranded or a double-stranded nucleic acid. In the first case, massive π-electron overlapping between bases and intercalated AO leads to a metachromatic red emission. On the contrary, no excited-state orbital overlapping in AO-intercalated DNA duplexes is possible due to excessive separation between AO molecules and compliancy to the nearest neighbor exclusion principle, which manifests as orthochromatic green fluorescence.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemosensors11100540","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Many fluorophores display interesting features that make them useful biological labels and chemosensors, in particular in Cell Biology. Changes in the absorption-emission spectra (ortho- and metachromasia) are accounted among them. Acridine orange (AO) is one such fluorochromes that shows a prototypical orthochromatic vs. metachromatic behavior depending on its concentration and binding mode to different cellular substrates. Here, we revisit the differential AO fluorescence that occurs in selected biological examples, which allows for the identification of single-stranded or double-stranded nucleic acids. Although known for long, the ultimate reason for this phenomenon has not been properly advanced. We provide a potential molecular mechanism that adequately accounts for the different aspects of the phenomenon. This theoretical mechanism implies a difference in the degree of overlap of excited state orbitals whenever AO molecules are interacting with a single-stranded or a double-stranded nucleic acid. In the first case, massive π-electron overlapping between bases and intercalated AO leads to a metachromatic red emission. On the contrary, no excited-state orbital overlapping in AO-intercalated DNA duplexes is possible due to excessive separation between AO molecules and compliancy to the nearest neighbor exclusion principle, which manifests as orthochromatic green fluorescence.
更新细胞化学染色体染色中的正色和异色吖啶橙荧光:基于插层的理解其在双链和单链核酸底物上的差异荧光的建议
许多荧光团显示出有趣的特征,使它们成为有用的生物标记和化学传感器,特别是在细胞生物学中。吸收-发射光谱(正色差和异色差)的变化也在其中。吖啶橙(AO)就是这样一种荧光染料,根据其浓度和与不同细胞底物的结合方式,显示出典型的正色与偏色行为。在这里,我们重温不同的AO荧光发生在选定的生物例子,这允许单链或双链核酸的鉴定。虽然人们早就知道这一现象的最终原因,但一直没有适当地提出。我们提供了一个潜在的分子机制,充分说明了这一现象的不同方面。这一理论机制表明,当AO分子与单链或双链核酸相互作用时,激发态轨道的重叠程度是不同的。在第一种情况下,碱基和嵌入的AO之间的大量π电子重叠导致了偏色红发射。相反,由于AO分子之间的过度分离和遵循最近邻不相容原理,在AO嵌入DNA双链中不可能出现激发态轨道重叠,表现为正色绿色荧光。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemosensors
Chemosensors Chemistry-Analytical Chemistry
CiteScore
5.00
自引率
9.50%
发文量
450
审稿时长
11 weeks
期刊介绍: Chemosensors (ISSN 2227-9040; CODEN: CHEMO9) is an international, scientific, open access journal on the science and technology of chemical sensors published quarterly online by MDPI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信