Enhancing the Fault Tolerance of a Multi-Layered IoT Network through Rectangular and Interstitial Mesh in the Gateway Layer

IF 3.3 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS
Sastry Kodanda Rama Jammalamadaka, Bhupati Chokara, Sasi Bhanu Jammalamadaka, Balakrishna Kamesh Duvvuri, Rajarao Budaraju
{"title":"Enhancing the Fault Tolerance of a Multi-Layered IoT Network through Rectangular and Interstitial Mesh in the Gateway Layer","authors":"Sastry Kodanda Rama Jammalamadaka, Bhupati Chokara, Sasi Bhanu Jammalamadaka, Balakrishna Kamesh Duvvuri, Rajarao Budaraju","doi":"10.3390/jsan12050076","DOIUrl":null,"url":null,"abstract":"Most IoT systems designed for the implementation of mission-critical systems are multi-layered. Much of the computing is done in the service and gateway layers. The gateway layer connects the internal section of the IoT to the cloud through the Internet. The failure of any node between the servers and the gateways will isolate the entire network, leading to zero tolerance. The service and gateway layers must be connected using networking topologies to yield 100% fault tolerance. The empirical formulation of the model chosen to connect the service’s servers to the gateways through routers is required to compute the fault tolerance of the network. A rectangular and interstitial mesh have been proposed in this paper to connect the service servers to the gateways through the servers, which yields 0.999 fault tolerance of the IoT network. Also provided is an empirical approach to computing the IoT network’s fault tolerance. A rectangular and interstitial mesh have been implemented in the network’s gateway layer, increasing the IoT network’s ability to tolerate faults by 11%.","PeriodicalId":37584,"journal":{"name":"Journal of Sensor and Actuator Networks","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sensor and Actuator Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jsan12050076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Most IoT systems designed for the implementation of mission-critical systems are multi-layered. Much of the computing is done in the service and gateway layers. The gateway layer connects the internal section of the IoT to the cloud through the Internet. The failure of any node between the servers and the gateways will isolate the entire network, leading to zero tolerance. The service and gateway layers must be connected using networking topologies to yield 100% fault tolerance. The empirical formulation of the model chosen to connect the service’s servers to the gateways through routers is required to compute the fault tolerance of the network. A rectangular and interstitial mesh have been proposed in this paper to connect the service servers to the gateways through the servers, which yields 0.999 fault tolerance of the IoT network. Also provided is an empirical approach to computing the IoT network’s fault tolerance. A rectangular and interstitial mesh have been implemented in the network’s gateway layer, increasing the IoT network’s ability to tolerate faults by 11%.
通过网关层的矩形和间隙网格增强多层物联网网络的容错性
大多数为实现关键任务系统而设计的物联网系统都是多层的。大部分计算是在服务层和网关层完成的。网关层通过互联网将物联网的内部部分连接到云。服务器和网关之间任何节点的故障都将隔离整个网络,导致零容忍。服务层和网关层必须使用网络拓扑进行连接,以实现100%的容错。为了计算网络的容错能力,需要选择通过路由器将服务的服务器连接到网关的模型的经验公式。本文提出了一种矩形和间隙网格,通过服务器将业务服务器连接到网关,使物联网网络容错率达到0.999。本文还提供了一种计算物联网网络容错性的经验方法。在网络的网关层中实现了矩形和间隙网格,将物联网网络的容错能力提高了11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Sensor and Actuator Networks
Journal of Sensor and Actuator Networks Physics and Astronomy-Instrumentation
CiteScore
7.90
自引率
2.90%
发文量
70
审稿时长
11 weeks
期刊介绍: Journal of Sensor and Actuator Networks (ISSN 2224-2708) is an international open access journal on the science and technology of sensor and actuator networks. It publishes regular research papers, reviews (including comprehensive reviews on complete sensor and actuator networks), and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信