Haochang Luo, Ángel F. Adames Corraliza, Richard B. Rood
{"title":"Barotropic and Moisture-vortex growth of Monsoon Low Pressure Systems","authors":"Haochang Luo, Ángel F. Adames Corraliza, Richard B. Rood","doi":"10.1175/jas-d-22-0252.1","DOIUrl":null,"url":null,"abstract":"Abstract As one of the most prominent weather systems over the Indian subcontinent, the Indian summer monsoon low pressure systems (MLPSs) have been studied extensively over the past decades. However, the processes that govern the growth of the MLPSs are not well understood. To better understand these processes, we created an MLPS index using bandpass-filtered precipitation data. Lag regression maps and vertical cross-sections are used to document the distribution of moisture, moist static energy (MSE), geopotential, horizontal and vertical motions in these systems. It is shown that moisture governs the distribution of MSE and is in phase with precipitation, vertical motion, and geopotential during the MLPS cycle. Examination of the MSE budget reveals that longwave radiative heating maintains the MSE anomalies against dissipation from vertical MSE advection. These processes nearly cancel one another, and it is variations in horizontal MSE advection that are found to explain the growth and decay of the MSE anomalies. Horizontal MSE advection contributes to the growth of the MSE anomalies in MLPSs prior to the system attaining a maximum amplitude and contributes to decay thereafter. The horizontal MSE advection is largely due to meridional advection of mean state MSE by the anomalous winds, suggesting that the MSE anomalies undergo a moisture-vortex instability (MVI)-like growth. In contrast, perturbation kinetic energy (PKE) is generated through barotropic conversion. The structure, propagation, and energetics of the regressed MLPSs are consistent with both barotropic and moisture-vortex growth.","PeriodicalId":17231,"journal":{"name":"Journal of the Atmospheric Sciences","volume":"29 1","pages":"0"},"PeriodicalIF":3.0000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Atmospheric Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/jas-d-22-0252.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract As one of the most prominent weather systems over the Indian subcontinent, the Indian summer monsoon low pressure systems (MLPSs) have been studied extensively over the past decades. However, the processes that govern the growth of the MLPSs are not well understood. To better understand these processes, we created an MLPS index using bandpass-filtered precipitation data. Lag regression maps and vertical cross-sections are used to document the distribution of moisture, moist static energy (MSE), geopotential, horizontal and vertical motions in these systems. It is shown that moisture governs the distribution of MSE and is in phase with precipitation, vertical motion, and geopotential during the MLPS cycle. Examination of the MSE budget reveals that longwave radiative heating maintains the MSE anomalies against dissipation from vertical MSE advection. These processes nearly cancel one another, and it is variations in horizontal MSE advection that are found to explain the growth and decay of the MSE anomalies. Horizontal MSE advection contributes to the growth of the MSE anomalies in MLPSs prior to the system attaining a maximum amplitude and contributes to decay thereafter. The horizontal MSE advection is largely due to meridional advection of mean state MSE by the anomalous winds, suggesting that the MSE anomalies undergo a moisture-vortex instability (MVI)-like growth. In contrast, perturbation kinetic energy (PKE) is generated through barotropic conversion. The structure, propagation, and energetics of the regressed MLPSs are consistent with both barotropic and moisture-vortex growth.
期刊介绍:
The Journal of the Atmospheric Sciences (JAS) publishes basic research related to the physics, dynamics, and chemistry of the atmosphere of Earth and other planets, with emphasis on the quantitative and deductive aspects of the subject.
The links provide detailed information for readers, authors, reviewers, and those who wish to submit a manuscript for consideration.