Complete First-Order Reasoning for Properties of Functional Programs

IF 2.2 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Adithya Murali, Lucas Peña, Ranjit Jhala, P. Madhusudan
{"title":"Complete First-Order Reasoning for Properties of Functional Programs","authors":"Adithya Murali, Lucas Peña, Ranjit Jhala, P. Madhusudan","doi":"10.1145/3622835","DOIUrl":null,"url":null,"abstract":"Several practical tools for automatically verifying functional programs (e.g., Liquid Haskell and Leon for Scala programs) rely on a heuristic based on unrolling recursive function definitions followed by quantifier-free reasoning using SMT solvers. We uncover foundational theoretical properties of this heuristic, revealing that it can be generalized and formalized as a technique that is in fact complete for reasoning with combined First-Order theories of algebraic datatypes and background theories, where background theories support decidable quantifier-free reasoning. The theory developed in this paper explains the efficacy of these heuristics when they succeed, explain why they fail when they fail, and the precise role that user help plays in making proofs succeed.","PeriodicalId":20697,"journal":{"name":"Proceedings of the ACM on Programming Languages","volume":"176 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3622835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Several practical tools for automatically verifying functional programs (e.g., Liquid Haskell and Leon for Scala programs) rely on a heuristic based on unrolling recursive function definitions followed by quantifier-free reasoning using SMT solvers. We uncover foundational theoretical properties of this heuristic, revealing that it can be generalized and formalized as a technique that is in fact complete for reasoning with combined First-Order theories of algebraic datatypes and background theories, where background theories support decidable quantifier-free reasoning. The theory developed in this paper explains the efficacy of these heuristics when they succeed, explain why they fail when they fail, and the precise role that user help plays in making proofs succeed.
函数程序性质的完全一阶推理
一些用于自动验证函数程序的实用工具(例如,用于Scala程序的Liquid Haskell和Leon)依赖于启发式方法,该方法基于展开递归函数定义,然后使用SMT求解器进行无量词推理。我们揭示了这种启发式的基本理论特性,揭示了它可以被推广和形式化为一种技术,实际上是一种完整的推理技术,结合代数数据类型的一阶理论和背景理论,其中背景理论支持可决定的无量词推理。本文中发展的理论解释了这些启发式在成功时的有效性,解释了它们失败时失败的原因,以及用户帮助在证明成功中所起的确切作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the ACM on Programming Languages
Proceedings of the ACM on Programming Languages Engineering-Safety, Risk, Reliability and Quality
CiteScore
5.20
自引率
22.20%
发文量
192
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信