Mobius: Synthesizing Relational Queries with Recursive and Invented Predicates

IF 2.2 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Aalok Thakkar, Nathaniel Sands, George Petrou, Rajeev Alur, Mayur Naik, Mukund Raghothaman
{"title":"Mobius: Synthesizing Relational Queries with Recursive and Invented Predicates","authors":"Aalok Thakkar, Nathaniel Sands, George Petrou, Rajeev Alur, Mayur Naik, Mukund Raghothaman","doi":"10.1145/3622847","DOIUrl":null,"url":null,"abstract":"Synthesizing relational queries from data is challenging in the presence of recursion and invented predicates. We propose a fully automated approach to synthesize such queries. Our approach comprises of two steps: it first synthesizes a non-recursive query consistent with the given data, and then identifies recursion schemes in it and thereby generalizes to arbitrary data. This generalization is achieved by an iterative predicate unification procedure which exploits the notion of data provenance to accelerate convergence. In each iteration of the procedure, a constraint solver proposes a candidate query, and a query evaluator checks if the proposed program is consistent with the given data. The data provenance for a failed query allows us to construct additional constraints for the constraint solver and refine the search. We have implemented our approach in a tool named Mobius. On a suite of 21 challenging recursive query synthesis tasks, Mobius outperforms three state-of-the-art baselines Gensynth, ILASP, and Popper, both in terms of runtime and accuracy. We also demonstrate that the synthesized queries generalize well to unseen data.","PeriodicalId":20697,"journal":{"name":"Proceedings of the ACM on Programming Languages","volume":"2 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3622847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Synthesizing relational queries from data is challenging in the presence of recursion and invented predicates. We propose a fully automated approach to synthesize such queries. Our approach comprises of two steps: it first synthesizes a non-recursive query consistent with the given data, and then identifies recursion schemes in it and thereby generalizes to arbitrary data. This generalization is achieved by an iterative predicate unification procedure which exploits the notion of data provenance to accelerate convergence. In each iteration of the procedure, a constraint solver proposes a candidate query, and a query evaluator checks if the proposed program is consistent with the given data. The data provenance for a failed query allows us to construct additional constraints for the constraint solver and refine the search. We have implemented our approach in a tool named Mobius. On a suite of 21 challenging recursive query synthesis tasks, Mobius outperforms three state-of-the-art baselines Gensynth, ILASP, and Popper, both in terms of runtime and accuracy. We also demonstrate that the synthesized queries generalize well to unseen data.
Mobius:用递归谓词和虚构谓词综合关系查询
在存在递归和虚构谓词的情况下,从数据中合成关系查询具有挑战性。我们提出了一种完全自动化的方法来合成这些查询。我们的方法包括两个步骤:首先合成与给定数据一致的非递归查询,然后识别其中的递归模式,从而推广到任意数据。这种泛化是通过迭代谓词统一过程实现的,该过程利用数据来源的概念来加速收敛。在该过程的每次迭代中,约束求解器提出一个候选查询,查询求值器检查所提出的程序是否与给定的数据一致。失败查询的数据来源允许我们为约束求解器构造额外的约束并改进搜索。我们已经在一个名为Mobius的工具中实现了我们的方法。在包含21个具有挑战性的递归查询合成任务的套件中,Mobius在运行时间和准确性方面都优于三个最先进的基线Gensynth、ILASP和Popper。我们还证明了合成查询可以很好地泛化到不可见的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the ACM on Programming Languages
Proceedings of the ACM on Programming Languages Engineering-Safety, Risk, Reliability and Quality
CiteScore
5.20
自引率
22.20%
发文量
192
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信