Artem Klashtorny, Zhuanhao Wu, Anirudh Mohan Kaushik, Hiren Patel
{"title":"Predictable GPU Wavefront Splitting for Safety-Critical Systems","authors":"Artem Klashtorny, Zhuanhao Wu, Anirudh Mohan Kaushik, Hiren Patel","doi":"10.1145/3609102","DOIUrl":null,"url":null,"abstract":"We present a predictable wavefront splitting (PWS) technique for graphics processing units (GPUs). PWS improves the performance of GPU applications by reducing the impact of branch divergence while ensuring that worst-case execution time (WCET) estimates can be computed. This makes PWS an appropriate technique to use in safety-critical applications, such as autonomous driving systems, avionics, and space, that require strict temporal guarantees. In developing PWS on an AMD-based GPU, we propose microarchitectural enhancements to the GPU, and a compiler pass that eliminates branch serializations to reduce the WCET of a wavefront. Our analysis of PWS exhibits a performance improvement of 11% over existing architectures with a lower WCET than prior works in wavefront splitting.","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":"87 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609102","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
We present a predictable wavefront splitting (PWS) technique for graphics processing units (GPUs). PWS improves the performance of GPU applications by reducing the impact of branch divergence while ensuring that worst-case execution time (WCET) estimates can be computed. This makes PWS an appropriate technique to use in safety-critical applications, such as autonomous driving systems, avionics, and space, that require strict temporal guarantees. In developing PWS on an AMD-based GPU, we propose microarchitectural enhancements to the GPU, and a compiler pass that eliminates branch serializations to reduce the WCET of a wavefront. Our analysis of PWS exhibits a performance improvement of 11% over existing architectures with a lower WCET than prior works in wavefront splitting.
期刊介绍:
The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.