SpikeHard: Efficiency-Driven Neuromorphic Hardware for Heterogeneous Systems-on-Chip

IF 2.8 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Judicael Clair, Guy Eichler, Luca P. Carloni
{"title":"SpikeHard: Efficiency-Driven Neuromorphic Hardware for Heterogeneous Systems-on-Chip","authors":"Judicael Clair, Guy Eichler, Luca P. Carloni","doi":"10.1145/3609101","DOIUrl":null,"url":null,"abstract":"Neuromorphic computing is an emerging field with the potential to offer performance and energy-efficiency gains over traditional machine learning approaches. Most neuromorphic hardware, however, has been designed with limited concerns to the problem of integrating it with other components in a heterogeneous System-on-Chip (SoC). Building on a state-of-the-art reconfigurable neuromorphic architecture, we present the design of a neuromorphic hardware accelerator equipped with a programmable interface that simplifies both the integration into an SoC and communication with the processor present on the SoC. To optimize the allocation of on-chip resources, we develop an optimizer to restructure existing neuromorphic models for a given hardware architecture, and perform design-space exploration to find highly efficient implementations. We conduct experiments with various FPGA-based prototypes of many-accelerator SoCs, where Linux-based applications running on a RISC-V processor invoke Pareto-optimal implementations of our accelerator alongside third-party accelerators. These experiments demonstrate that our neuromorphic hardware, which is up to 89× faster and 170× more energy efficient after applying our optimizer, can be used in synergy with other accelerators for different application purposes.","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":"26 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3609101","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Neuromorphic computing is an emerging field with the potential to offer performance and energy-efficiency gains over traditional machine learning approaches. Most neuromorphic hardware, however, has been designed with limited concerns to the problem of integrating it with other components in a heterogeneous System-on-Chip (SoC). Building on a state-of-the-art reconfigurable neuromorphic architecture, we present the design of a neuromorphic hardware accelerator equipped with a programmable interface that simplifies both the integration into an SoC and communication with the processor present on the SoC. To optimize the allocation of on-chip resources, we develop an optimizer to restructure existing neuromorphic models for a given hardware architecture, and perform design-space exploration to find highly efficient implementations. We conduct experiments with various FPGA-based prototypes of many-accelerator SoCs, where Linux-based applications running on a RISC-V processor invoke Pareto-optimal implementations of our accelerator alongside third-party accelerators. These experiments demonstrate that our neuromorphic hardware, which is up to 89× faster and 170× more energy efficient after applying our optimizer, can be used in synergy with other accelerators for different application purposes.
SpikeHard:异构片上系统的效率驱动神经形态硬件
神经形态计算是一个新兴领域,与传统的机器学习方法相比,它有潜力提供性能和能效方面的提升。然而,大多数神经形态硬件在设计时,对将其与异质片上系统(SoC)中的其他组件集成的问题关注有限。基于最先进的可重构神经形态架构,我们提出了一种神经形态硬件加速器的设计,该加速器配备了可编程接口,简化了集成到SoC中的过程以及与SoC上处理器的通信。为了优化片上资源的分配,我们开发了一个优化器来重构给定硬件架构的现有神经形态模型,并进行设计空间探索以找到高效的实现。我们对各种基于fpga的多加速器soc原型进行了实验,其中运行在RISC-V处理器上的基于linux的应用程序调用了我们的加速器和第三方加速器的帕累托最优实现。这些实验表明,应用我们的优化器后,我们的神经形态硬件的速度提高了89倍,能效提高了170倍,可以与其他加速器协同使用,用于不同的应用目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Embedded Computing Systems
ACM Transactions on Embedded Computing Systems 工程技术-计算机:软件工程
CiteScore
3.70
自引率
0.00%
发文量
138
审稿时长
6 months
期刊介绍: The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信