{"title":"CABARRE: Request Response Arbitration for Shared Cache Management","authors":"Garima Modi, Aritra Bagchi, Neetu Jindal, Ayan Mandal, Preeti Ranjan Panda","doi":"10.1145/3608096","DOIUrl":null,"url":null,"abstract":"Modern multi-processor systems-on-chip (MPSoCs) are characterized by caches shared by multiple cores. These shared caches receive requests issued by the processor cores. Requests that are subject to cache misses may result in the generation of responses . These responses are received from the lower level of the memory hierarchy and written to the cache. The outstanding requests and responses contend for the shared cache bandwidth. To mitigate the impact of the cache bandwidth contention on the overall system performance, an efficient request and response arbitration policy is needed. Research on shared cache management has neglected the additional cache contention caused by responses, which are written to the cache. We propose CABARRE , a novel request and response arbitration policy at shared caches, so as to improve the overall system performance. CABARRE shows a performance improvement of 23% on average across a set of SPEC workloads compared to straightforward adaptations of state-of-the-art solutions.","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3608096","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Modern multi-processor systems-on-chip (MPSoCs) are characterized by caches shared by multiple cores. These shared caches receive requests issued by the processor cores. Requests that are subject to cache misses may result in the generation of responses . These responses are received from the lower level of the memory hierarchy and written to the cache. The outstanding requests and responses contend for the shared cache bandwidth. To mitigate the impact of the cache bandwidth contention on the overall system performance, an efficient request and response arbitration policy is needed. Research on shared cache management has neglected the additional cache contention caused by responses, which are written to the cache. We propose CABARRE , a novel request and response arbitration policy at shared caches, so as to improve the overall system performance. CABARRE shows a performance improvement of 23% on average across a set of SPEC workloads compared to straightforward adaptations of state-of-the-art solutions.
期刊介绍:
The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.