{"title":"On the lack of Gaussian tail for rough line integrals along fractional Brownian paths","authors":"H. Boedihardjo, X. Geng","doi":"10.1007/s00440-023-01242-4","DOIUrl":null,"url":null,"abstract":"Abstract We show that the tail probability of the rough line integral $$\\int _{0}^{1}\\phi (X_{t})dY_{t}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msubsup> <mml:mo>∫</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> <mml:mn>1</mml:mn> </mml:msubsup> <mml:mi>ϕ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>Y</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> </mml:math> , where ( X , Y ) is a 2D fractional Brownian motion with Hurst parameter $$H\\in (1/4,1/2)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> and $$\\phi $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ϕ</mml:mi> </mml:math> is a $$C_{b}^{\\infty }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>b</mml:mi> </mml:mrow> <mml:mi>∞</mml:mi> </mml:msubsup> </mml:math> -function satisfying a mild non-degeneracy condition on its derivative, cannot decay faster than a $$\\gamma $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>γ</mml:mi> </mml:math> -Weibull tail with any exponent $$\\gamma >2H+1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>γ</mml:mi> <mml:mo>></mml:mo> <mml:mn>2</mml:mn> <mml:mi>H</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . In particular, this produces a simple class of examples of differential equations driven by fBM, whose solutions fail to have Gaussian tail even though the underlying vector fields are assumed to be of class $$C_{b}^{\\infty }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>b</mml:mi> </mml:mrow> <mml:mi>∞</mml:mi> </mml:msubsup> </mml:math> . This also demonstrates that the well-known upper tail estimate proved by Cass–Litterer–Lyons in 2013 is essentially sharp.","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00440-023-01242-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We show that the tail probability of the rough line integral $$\int _{0}^{1}\phi (X_{t})dY_{t}$$ ∫01ϕ(Xt)dYt , where ( X , Y ) is a 2D fractional Brownian motion with Hurst parameter $$H\in (1/4,1/2)$$ H∈(1/4,1/2) and $$\phi $$ ϕ is a $$C_{b}^{\infty }$$ Cb∞ -function satisfying a mild non-degeneracy condition on its derivative, cannot decay faster than a $$\gamma $$ γ -Weibull tail with any exponent $$\gamma >2H+1$$ γ>2H+1 . In particular, this produces a simple class of examples of differential equations driven by fBM, whose solutions fail to have Gaussian tail even though the underlying vector fields are assumed to be of class $$C_{b}^{\infty }$$ Cb∞ . This also demonstrates that the well-known upper tail estimate proved by Cass–Litterer–Lyons in 2013 is essentially sharp.
期刊介绍:
Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.