On the lack of Gaussian tail for rough line integrals along fractional Brownian paths

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
H. Boedihardjo, X. Geng
{"title":"On the lack of Gaussian tail for rough line integrals along fractional Brownian paths","authors":"H. Boedihardjo, X. Geng","doi":"10.1007/s00440-023-01242-4","DOIUrl":null,"url":null,"abstract":"Abstract We show that the tail probability of the rough line integral $$\\int _{0}^{1}\\phi (X_{t})dY_{t}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msubsup> <mml:mo>∫</mml:mo> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> <mml:mn>1</mml:mn> </mml:msubsup> <mml:mi>ϕ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>X</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>)</mml:mo> </mml:mrow> <mml:mi>d</mml:mi> <mml:msub> <mml:mi>Y</mml:mi> <mml:mi>t</mml:mi> </mml:msub> </mml:mrow> </mml:math> , where ( X , Y ) is a 2D fractional Brownian motion with Hurst parameter $$H\\in (1/4,1/2)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>H</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>4</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math> and $$\\phi $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>ϕ</mml:mi> </mml:math> is a $$C_{b}^{\\infty }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>b</mml:mi> </mml:mrow> <mml:mi>∞</mml:mi> </mml:msubsup> </mml:math> -function satisfying a mild non-degeneracy condition on its derivative, cannot decay faster than a $$\\gamma $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mi>γ</mml:mi> </mml:math> -Weibull tail with any exponent $$\\gamma &gt;2H+1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>γ</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>2</mml:mn> <mml:mi>H</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> . In particular, this produces a simple class of examples of differential equations driven by fBM, whose solutions fail to have Gaussian tail even though the underlying vector fields are assumed to be of class $$C_{b}^{\\infty }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msubsup> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>b</mml:mi> </mml:mrow> <mml:mi>∞</mml:mi> </mml:msubsup> </mml:math> . This also demonstrates that the well-known upper tail estimate proved by Cass–Litterer–Lyons in 2013 is essentially sharp.","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00440-023-01242-4","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract We show that the tail probability of the rough line integral $$\int _{0}^{1}\phi (X_{t})dY_{t}$$ 0 1 ϕ ( X t ) d Y t , where ( X , Y ) is a 2D fractional Brownian motion with Hurst parameter $$H\in (1/4,1/2)$$ H ( 1 / 4 , 1 / 2 ) and $$\phi $$ ϕ is a $$C_{b}^{\infty }$$ C b -function satisfying a mild non-degeneracy condition on its derivative, cannot decay faster than a $$\gamma $$ γ -Weibull tail with any exponent $$\gamma >2H+1$$ γ > 2 H + 1 . In particular, this produces a simple class of examples of differential equations driven by fBM, whose solutions fail to have Gaussian tail even though the underlying vector fields are assumed to be of class $$C_{b}^{\infty }$$ C b . This also demonstrates that the well-known upper tail estimate proved by Cass–Litterer–Lyons in 2013 is essentially sharp.
分数阶布朗路径粗糙线积分的高斯尾缺失问题
摘要我们证明了粗线积分$$\int _{0}^{1}\phi (X_{t})dY_{t}$$∫0 1 φ (X t) d Y t的尾部概率,其中(X, Y)是一个具有Hurst参数$$H\in (1/4,1/2)$$ H∈(1 / 4,1 / 2)的二维分数阶布朗运动,$$\phi $$ φ是一个满足其导数的温和非简并条件的$$C_{b}^{\infty }$$ C b∞函数,不能比具有任意指数$$\gamma >2H+1$$ γ &gt的$$\gamma $$ γ -威布尔尾部衰减得更快;2h + 1。特别是,这产生了一类由fBM驱动的微分方程的简单例子,即使假设底层向量场为$$C_{b}^{\infty }$$ C b∞类,其解也不具有高斯尾。这也证明了由Cass-Litterer-Lyons在2013年证明的众所周知的上尾估计本质上是尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信