{"title":"Improving Traffic Efficiency in a Road Network by Adopting Decentralised Multi-Agent Reinforcement Learning and Smart Navigation","authors":"Hung Tuan Trinh, Sang-Hoon Bae, Quang Duy Tran","doi":"10.7307/ptt.v35i5.246","DOIUrl":null,"url":null,"abstract":"In the future, mixed traffic flow will consist of human-driven vehicles (HDVs) and connected autonomous vehicles (CAVs). Effective traffic management is a global challenge, especially in urban areas with many intersections. Much research has focused on solving this problem to increase intersection network performance. Reinforcement learning (RL) is a new approach to optimising traffic signal lights that overcomes the disadvantages of traditional methods. In this paper, we propose an integrated approach that combines the multi-agent advantage actor-critic (MA-A2C) and smart navigation (SN) to solve the congestion problem in a road network under mixed traffic conditions. The A2C algorithm combines the advantages of value-based and policy-based methods to stabilise the training by reducing the variance. It also overcomes the limitations of centralised and independent MARL. In addition, the SN technique reroutes traffic load to alternate paths to avoid congestion at intersections. To evaluate the robustness of our approach, we compare our model against independent-A2C (I-A2C) and max pressure (MP). These results show that our proposed approach performs more efficiently than others regarding average waiting time, speed and queue length. In addition, the simulation results also suggest that the model is effective as the CAV penetration rate is greater than 20%.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7307/ptt.v35i5.246","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the future, mixed traffic flow will consist of human-driven vehicles (HDVs) and connected autonomous vehicles (CAVs). Effective traffic management is a global challenge, especially in urban areas with many intersections. Much research has focused on solving this problem to increase intersection network performance. Reinforcement learning (RL) is a new approach to optimising traffic signal lights that overcomes the disadvantages of traditional methods. In this paper, we propose an integrated approach that combines the multi-agent advantage actor-critic (MA-A2C) and smart navigation (SN) to solve the congestion problem in a road network under mixed traffic conditions. The A2C algorithm combines the advantages of value-based and policy-based methods to stabilise the training by reducing the variance. It also overcomes the limitations of centralised and independent MARL. In addition, the SN technique reroutes traffic load to alternate paths to avoid congestion at intersections. To evaluate the robustness of our approach, we compare our model against independent-A2C (I-A2C) and max pressure (MP). These results show that our proposed approach performs more efficiently than others regarding average waiting time, speed and queue length. In addition, the simulation results also suggest that the model is effective as the CAV penetration rate is greater than 20%.
期刊介绍:
This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology.
The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee.
The received papers are subject to peer review in accordance with the recommendations for international scientific journals.
The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering.
The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.