Konrad Lipkowski, Diana Abondano Almeida, Lisa Maria Schulte
{"title":"Perception of con- and heterospecific injury cues in tadpoles of dendrobatid, ranid and bufonid frogs (Anura)","authors":"Konrad Lipkowski, Diana Abondano Almeida, Lisa Maria Schulte","doi":"10.1007/s10682-023-10275-z","DOIUrl":null,"url":null,"abstract":"Abstract Predator-prey interactions are vital for organismal survival. They shape anti-predator mechanisms and often depend on sensory abilities. Tadpoles use chemical cues, such as injury cues (alarm cues), to assess predation risks and modify their life-history, morphology, and behaviours accordingly. However, the prevalence of chemically mediated anti-predator responses in species with distinct ecological niches (e.g. within phytotelmata) remains unknown, hindering our understanding of the ecological significance and evolution of alarm substances. Therefore, our study aimed to investigate chemically mediated anti-predator responses in tadpoles of two Neotropical poison dart frogs, Ranitomeya sirensis and Epipedobates anthonyi (and compare their responses to two Palearctic model organisms, Rana temporaria and Bufo bufo , which are known to utilise alarm substances). Through behavioural bioassays, we exposed predator-naïve tadpoles to extracts of each species (i.e. con- and heterospecific cues), including water as a control (i.e. five treatments per species). We assessed changes in their activity before and after stimulus introduction. Our results show that E. anthonyi did not respond to any of the stimuli, whereas R. sirensis displayed increased activity levels exclusively in response to conspecific cues, but not to heterospecific cues. With this, our findings suggest a specialized recognition system in R. sirensis , potentially directed at conspecific competitors but likely unrelated to anti-predator mechanisms. In contrast, E. anthonyi may be insensitive to injury cues or utilize alternative sensory modalities to respond to acute predation events. This study sheds light on the chemical alarm response system of Neotropical poison dart frog tadpoles, providing foundational understanding of how dendrobatids react to injury cues. It prompts questions about the ecological significance and evolutionary implications of chemical communication in species facing extreme resource limitation during development and underscores the importance of comparative research for understanding chemical communication in diverse aquatic ecosystems.","PeriodicalId":55158,"journal":{"name":"Evolutionary Ecology","volume":"21 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Ecology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10682-023-10275-z","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Predator-prey interactions are vital for organismal survival. They shape anti-predator mechanisms and often depend on sensory abilities. Tadpoles use chemical cues, such as injury cues (alarm cues), to assess predation risks and modify their life-history, morphology, and behaviours accordingly. However, the prevalence of chemically mediated anti-predator responses in species with distinct ecological niches (e.g. within phytotelmata) remains unknown, hindering our understanding of the ecological significance and evolution of alarm substances. Therefore, our study aimed to investigate chemically mediated anti-predator responses in tadpoles of two Neotropical poison dart frogs, Ranitomeya sirensis and Epipedobates anthonyi (and compare their responses to two Palearctic model organisms, Rana temporaria and Bufo bufo , which are known to utilise alarm substances). Through behavioural bioassays, we exposed predator-naïve tadpoles to extracts of each species (i.e. con- and heterospecific cues), including water as a control (i.e. five treatments per species). We assessed changes in their activity before and after stimulus introduction. Our results show that E. anthonyi did not respond to any of the stimuli, whereas R. sirensis displayed increased activity levels exclusively in response to conspecific cues, but not to heterospecific cues. With this, our findings suggest a specialized recognition system in R. sirensis , potentially directed at conspecific competitors but likely unrelated to anti-predator mechanisms. In contrast, E. anthonyi may be insensitive to injury cues or utilize alternative sensory modalities to respond to acute predation events. This study sheds light on the chemical alarm response system of Neotropical poison dart frog tadpoles, providing foundational understanding of how dendrobatids react to injury cues. It prompts questions about the ecological significance and evolutionary implications of chemical communication in species facing extreme resource limitation during development and underscores the importance of comparative research for understanding chemical communication in diverse aquatic ecosystems.
期刊介绍:
Evolutionary Ecology is a concept-oriented journal of biological research at the interface of ecology and evolution. We publish papers that therefore integrate both fields of research: research that seeks to explain the ecology of organisms in the context of evolution, or patterns of evolution as explained by ecological processes.
The journal publishes original research and discussion concerning the evolutionary ecology of organisms. These may include papers addressing evolutionary aspects of population ecology, organismal interactions and coevolution, behaviour, life histories, communication, morphology, host-parasite interactions and disease ecology, as well as ecological aspects of genetic processes. The objective is to promote the conceptual, theoretical and empirical development of ecology and evolutionary biology; the scope extends to any organism or system.
In additional to Original Research articles, we publish Review articles that survey recent developments in the field of evolutionary ecology; Ideas & Perspectives articles which present new points of view and novel hypotheses; and Comments on articles recently published in Evolutionary Ecology or elsewhere. We also welcome New Tests of Existing Ideas - testing well-established hypotheses but with broader data or more methodologically rigorous approaches; - and shorter Natural History Notes, which aim to present new observations of organismal biology in the wild that may provide inspiration for future research. As of 2018, we now also invite Methods papers, to present or review new theoretical, practical or analytical methods used in evolutionary ecology.
Students & Early Career Researchers: We particularly encourage, and offer incentives for, submission of Reviews, Ideas & Perspectives, and Methods papers by students and early-career researchers (defined as being within one year of award of a PhD degree) – see Students & Early Career Researchers