{"title":"Improving cloud storage and privacy security for digital twin based medical records","authors":"Haibo Yi","doi":"10.1186/s13677-023-00523-6","DOIUrl":null,"url":null,"abstract":"Abstract As digital transformation progresses across industries, digital twins have emerged as an important technology. In healthcare, digital twins are created by digitizing patient parameters, medical records, and treatment plans to enable personalized care, assist diagnosis, and improve planning. Data is core to digital twins, originating from physical and virtual entities as well as services. Once processed and integrated, data drives various components. Medical records are critical healthcare data but present unique challenges for digital twins. However, directly storing or encrypting medical records has issues. Plaintext risks privacy leaks while encryption hinders retrieval. To address this, we present a cloud-based solution combining post-quantum searchable encryption. Our system includes key generation using Physical Unable Functions (PUF). It encrypts medical records in cloud storage, verifies records using blockchain, and retrieves records via cloud. By integrating cloud encryption, blockchain verification and cloud retrieval, we propose a secure and efficient cloud-based medical records system for digital twins. Our implementation demonstrates the system provides users efficient and secure medical record services, compared to related designs. This highlights digital twins’ potential to transform healthcare through secure data-driven personalized care, diagnosis and planning.","PeriodicalId":56007,"journal":{"name":"Journal of Cloud Computing-Advances Systems and Applications","volume":"134 ","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cloud Computing-Advances Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13677-023-00523-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract As digital transformation progresses across industries, digital twins have emerged as an important technology. In healthcare, digital twins are created by digitizing patient parameters, medical records, and treatment plans to enable personalized care, assist diagnosis, and improve planning. Data is core to digital twins, originating from physical and virtual entities as well as services. Once processed and integrated, data drives various components. Medical records are critical healthcare data but present unique challenges for digital twins. However, directly storing or encrypting medical records has issues. Plaintext risks privacy leaks while encryption hinders retrieval. To address this, we present a cloud-based solution combining post-quantum searchable encryption. Our system includes key generation using Physical Unable Functions (PUF). It encrypts medical records in cloud storage, verifies records using blockchain, and retrieves records via cloud. By integrating cloud encryption, blockchain verification and cloud retrieval, we propose a secure and efficient cloud-based medical records system for digital twins. Our implementation demonstrates the system provides users efficient and secure medical record services, compared to related designs. This highlights digital twins’ potential to transform healthcare through secure data-driven personalized care, diagnosis and planning.
期刊介绍:
The Journal of Cloud Computing: Advances, Systems and Applications (JoCCASA) will publish research articles on all aspects of Cloud Computing. Principally, articles will address topics that are core to Cloud Computing, focusing on the Cloud applications, the Cloud systems, and the advances that will lead to the Clouds of the future. Comprehensive review and survey articles that offer up new insights, and lay the foundations for further exploratory and experimental work, are also relevant.