Latent morphologies: Encoding architectural features and decoding their structure through artificial intelligence

IF 1.6 0 ARCHITECTURE
Dongyun Kim
{"title":"Latent morphologies: Encoding architectural features and decoding their structure through artificial intelligence","authors":"Dongyun Kim","doi":"10.1177/14780771231209458","DOIUrl":null,"url":null,"abstract":"This article explores the impact of Artificial Intelligence (AI) on the architectural discipline, focusing on generative models and their controllability. While generative models have revolutionized the design process by freeing designers from specific tasks and allowing them to focus on desired results, the reliance on randomness frequently hinders controllability and meaningful experimentation. To address this challenge, the article proposes the construction of an encyclopedic architectural dataset, encompassing various architectural projects and combining images with text for multimodal applications and two methodologies, multi-class StyleGAN and multimodal StyleGAN+CLIP to enhance controllability. Utilizing specific conditions, multi-class StyleGAN enables designers to navigate latent space and identify hidden patterns, while StyleGAN+CLIP integrates text to achieve specific controllability and generate diverse architectural features. Through experimentation, the research showcases the potential of generative models to create structured designs that incorporate existing architectural styles.","PeriodicalId":45139,"journal":{"name":"International Journal of Architectural Computing","volume":"178 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Architectural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14780771231209458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This article explores the impact of Artificial Intelligence (AI) on the architectural discipline, focusing on generative models and their controllability. While generative models have revolutionized the design process by freeing designers from specific tasks and allowing them to focus on desired results, the reliance on randomness frequently hinders controllability and meaningful experimentation. To address this challenge, the article proposes the construction of an encyclopedic architectural dataset, encompassing various architectural projects and combining images with text for multimodal applications and two methodologies, multi-class StyleGAN and multimodal StyleGAN+CLIP to enhance controllability. Utilizing specific conditions, multi-class StyleGAN enables designers to navigate latent space and identify hidden patterns, while StyleGAN+CLIP integrates text to achieve specific controllability and generate diverse architectural features. Through experimentation, the research showcases the potential of generative models to create structured designs that incorporate existing architectural styles.
潜在形态:通过人工智能对建筑特征进行编码并解码其结构
本文探讨了人工智能(AI)对建筑学科的影响,重点是生成模型及其可控性。虽然生成模型通过将设计师从特定任务中解放出来并允许他们专注于期望的结果而彻底改变了设计过程,但对随机性的依赖往往会阻碍可控性和有意义的实验。为了应对这一挑战,本文提出构建一个百科全书式的建筑数据集,包括各种建筑项目,并将图像与文本结合起来用于多模式应用,以及两种方法,多类StyleGAN和多模式StyleGAN+CLIP,以增强可控性。利用特定条件,多类StyleGAN使设计师能够导航潜在空间,识别隐藏模式,而StyleGAN+CLIP集成文本,实现特定的可控性,生成多样化的建筑特征。通过实验,该研究展示了生成模型的潜力,可以创建结合现有建筑风格的结构化设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
17.60%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信