Vibration Signal Analysis of Complex Mechanical Systems and Early Wear Detection and Forecasting for Gears

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Suzhen Wu
{"title":"Vibration Signal Analysis of Complex Mechanical Systems and Early Wear Detection and Forecasting for Gears","authors":"Suzhen Wu","doi":"10.18280/ts.400527","DOIUrl":null,"url":null,"abstract":"With the advancement of modern industrial technology, complex mechanical systems have found extensive applications across various industries. Gears, integral components of these systems, play a crucial role in determining the stability and safety of the entire system. Wear and aging of system components during prolonged operations might lead to performance degradation or system failures. Historically, numerous methods for vibration signal analysis and gear wear detection have been proposed. However, these methods often exhibit limitations when applied to intricate systems, such as reliance on empirical rules and sub-optimal handling of nonlinear vibration signals. In light of these challenges, the vibration genesis mechanism in complex mechanical systems has been deeply investigated. A “Gear Health Factor” has been introduced, and a wear prediction model for gears, incorporating Bidirectional Long Short-Term Memory (Bi-LSTM) networks and attention mechanisms, has been developed. This research offers fresh perspectives and methods for the health management of complex mechanical systems and holds significant practical implications.","PeriodicalId":49430,"journal":{"name":"Traitement Du Signal","volume":"56 3","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Traitement Du Signal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ts.400527","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of modern industrial technology, complex mechanical systems have found extensive applications across various industries. Gears, integral components of these systems, play a crucial role in determining the stability and safety of the entire system. Wear and aging of system components during prolonged operations might lead to performance degradation or system failures. Historically, numerous methods for vibration signal analysis and gear wear detection have been proposed. However, these methods often exhibit limitations when applied to intricate systems, such as reliance on empirical rules and sub-optimal handling of nonlinear vibration signals. In light of these challenges, the vibration genesis mechanism in complex mechanical systems has been deeply investigated. A “Gear Health Factor” has been introduced, and a wear prediction model for gears, incorporating Bidirectional Long Short-Term Memory (Bi-LSTM) networks and attention mechanisms, has been developed. This research offers fresh perspectives and methods for the health management of complex mechanical systems and holds significant practical implications.
复杂机械系统振动信号分析及齿轮早期磨损检测与预测
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Traitement Du Signal
Traitement Du Signal 工程技术-工程:电子与电气
自引率
21.10%
发文量
162
审稿时长
>12 weeks
期刊介绍: The TS provides rapid dissemination of original research in the field of signal processing, imaging and visioning. Since its founding in 1984, the journal has published articles that present original research results of a fundamental, methodological or applied nature. The editorial board welcomes articles on the latest and most promising results of academic research, including both theoretical results and case studies. The TS welcomes original research papers, technical notes and review articles on various disciplines, including but not limited to: Signal processing Imaging Visioning Control Filtering Compression Data transmission Noise reduction Deconvolution Prediction Identification Classification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信