The diagonal of quartic fivefolds

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nebojsa Pavic, Stefan Schreieder
{"title":"The diagonal of quartic fivefolds","authors":"Nebojsa Pavic, Stefan Schreieder","doi":"10.14231/ag-2023-027","DOIUrl":null,"url":null,"abstract":"We show that a very general quartic hypersurface in $\\mathbb P^6 $ over a field of characteristic different from 2 does not admit a decomposition of the diagonal, hence is not retract rational. This generalizes a result of Nicaise--Ottem, who showed stable irrationality over fields of characteristic 0. To prove our result, we introduce a new cycle-theoretic obstruction that may be seen as an analogue of the motivic obstruction for rationality in characteristic zero, introduced by Nicaise--Shinder and Kontsevich--Tschinkel.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14231/ag-2023-027","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

Abstract

We show that a very general quartic hypersurface in $\mathbb P^6 $ over a field of characteristic different from 2 does not admit a decomposition of the diagonal, hence is not retract rational. This generalizes a result of Nicaise--Ottem, who showed stable irrationality over fields of characteristic 0. To prove our result, we introduce a new cycle-theoretic obstruction that may be seen as an analogue of the motivic obstruction for rationality in characteristic zero, introduced by Nicaise--Shinder and Kontsevich--Tschinkel.
四次方的对角线
我们证明了$\mathbb P^6 $中一个非常一般的四次超曲面在不同于2的特征域上不允许对角线分解,因此它不是缩回有理的。这推广了Nicaise—Ottem的结果,后者在特征为0的域上显示了稳定的无理性。为了证明我们的结果,我们引入了一个新的循环理论障碍,它可以看作是Nicaise- Shinder和Kontsevich- Tschinkel在特征零点引入的理性动机障碍的类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信