{"title":"Channeling acceleration in crystals and nanostructures and studies of solid plasmas: new opportunities","authors":"Ariniello, Robert, Corde, Sebastien, Davoine, Xavier, Ekerfelt, Henrik, Fiuza, Frederico, Gilljohann, Max, Gremillet, Laurent, Mankovska, Yuliia, Piekarz, Henryk, Claveria, Pablo San Miguel, Shiltsev, Vladimir, Taborek, Peter, Tajima, Toshiki","doi":"10.1088/1748-0221/18/11/p11008","DOIUrl":null,"url":null,"abstract":"Abstract Plasma wakefield acceleration (PWFA) has shown illustrious progress and resulted in an impressive demonstration of tens of GeV particle acceleration in meter-long single structures. To reach even higher energies in the 1 TeV to 10 TeV range, a promising scheme is channeling acceleration in solid-density plasmas within crystals or nanostructures. The E336 experiment studies the beam-nanotarget interaction with the highly compressed electron bunches available at the FACET-II accelerator. These studies furthermore involve an in-depth research on dynamics of beam-plasma instabilities in ultra-dense plasma, its development and suppression in structured media like carbon nanotubes and crystals, and its potential use to transversely modulate the electron bunch.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"5 6","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/18/11/p11008","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Plasma wakefield acceleration (PWFA) has shown illustrious progress and resulted in an impressive demonstration of tens of GeV particle acceleration in meter-long single structures. To reach even higher energies in the 1 TeV to 10 TeV range, a promising scheme is channeling acceleration in solid-density plasmas within crystals or nanostructures. The E336 experiment studies the beam-nanotarget interaction with the highly compressed electron bunches available at the FACET-II accelerator. These studies furthermore involve an in-depth research on dynamics of beam-plasma instabilities in ultra-dense plasma, its development and suppression in structured media like carbon nanotubes and crystals, and its potential use to transversely modulate the electron bunch.
期刊介绍:
Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include.
-Accelerators: concepts, modelling, simulations and sources-
Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons-
Detector physics: concepts, processes, methods, modelling and simulations-
Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics-
Instrumentation and methods for plasma research-
Methods and apparatus for astronomy and astrophysics-
Detectors, methods and apparatus for biomedical applications, life sciences and material research-
Instrumentation and techniques for medical imaging, diagnostics and therapy-
Instrumentation and techniques for dosimetry, monitoring and radiation damage-
Detectors, instrumentation and methods for non-destructive tests (NDT)-
Detector readout concepts, electronics and data acquisition methods-
Algorithms, software and data reduction methods-
Materials and associated technologies, etc.-
Engineering and technical issues.
JINST also includes a section dedicated to technical reports and instrumentation theses.