{"title":"A Temporal Chrominance Trigger for Clean-Label Backdoor Attack Against Anti-Spoof Rebroadcast Detection","authors":"Wei Guo, Benedetta Tondi, Mauro Barni","doi":"10.1109/tdsc.2022.3233519","DOIUrl":null,"url":null,"abstract":"We propose a stealthy clean-label video backdoor attack against Deep Learning (DL)-based models aiming at detecting a particular class of spoofing attacks, namely video rebroadcast attacks. The injected backdoor does not affect spoofing detection in normal conditions, but induces a misclassification in the presence of a specific triggering signal. The proposed backdoor relies on a temporal trigger altering the average chrominance of the video sequence. The backdoor signal is designed by taking into account the peculiarities of the Human Visual System (HVS) to reduce the visibility of the trigger, thus increasing the stealthiness of the backdoor. To force the network to look at the presence of the trigger in the challenging clean-label scenario, we choose the poisoned samples used for the injection of the backdoor following a so-called Outlier Poisoning Strategy (OPS). According to OPS, the triggering signal is inserted in the training samples that the network finds more difficult to classify. The effectiveness of the proposed backdoor attack and its generality are validated experimentally on different datasets and anti-spoofing rebroadcast detection architectures.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"92 1","pages":"0"},"PeriodicalIF":7.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/tdsc.2022.3233519","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1
Abstract
We propose a stealthy clean-label video backdoor attack against Deep Learning (DL)-based models aiming at detecting a particular class of spoofing attacks, namely video rebroadcast attacks. The injected backdoor does not affect spoofing detection in normal conditions, but induces a misclassification in the presence of a specific triggering signal. The proposed backdoor relies on a temporal trigger altering the average chrominance of the video sequence. The backdoor signal is designed by taking into account the peculiarities of the Human Visual System (HVS) to reduce the visibility of the trigger, thus increasing the stealthiness of the backdoor. To force the network to look at the presence of the trigger in the challenging clean-label scenario, we choose the poisoned samples used for the injection of the backdoor following a so-called Outlier Poisoning Strategy (OPS). According to OPS, the triggering signal is inserted in the training samples that the network finds more difficult to classify. The effectiveness of the proposed backdoor attack and its generality are validated experimentally on different datasets and anti-spoofing rebroadcast detection architectures.
期刊介绍:
The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance.
The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability.
By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.