{"title":"Potential Estimates and Quasilinear Parabolic Equations with Measure Data","authors":"Quoc Hung Nguyen","doi":"10.1090/memo/1449","DOIUrl":null,"url":null,"abstract":"In this memoir, we study the existence and regularity of the quasilinear parabolic equations: <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u Subscript t Baseline minus d i v left-parenthesis upper A left-parenthesis x comma t comma nabla u right-parenthesis right-parenthesis equals upper B left-parenthesis u comma nabla u right-parenthesis plus mu comma\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:mi>div</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} u_t-\\operatorname {div}(A(x,t,\\nabla u))=B(u,\\nabla u)+\\mu , \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> in either <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript upper N plus 1\"> <mml:semantics> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^{N+1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript upper N Baseline times left-parenthesis 0 comma normal infinity right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> <mml:mo>×<!-- × --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^N\\times (0,\\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or on a bounded domain <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega times left-parenthesis 0 comma upper T right-parenthesis subset-of double-struck upper R Superscript upper N plus 1\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\Omega \\times (0,T)\\subset \\mathbb {R}^{N+1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N greater-than-or-equal-to 2\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">N\\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We shall assume that the nonlinearity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> fulfills standard growth conditions, the function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a continuous and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a radon measure. Our first task is to establish the existence results with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B left-parenthesis u comma nabla u right-parenthesis equals plus-or-minus StartAbsoluteValue u EndAbsoluteValue Superscript q minus 1 Baseline u\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mo>±<!-- ± --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>q</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mi>u</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B(u,\\nabla u)=\\pm |u|^{q-1}u</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">q>1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We next obtain global weighted-Lorentz, Lorentz-Morrey and Capacitary estimates on gradient of solutions with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B identical-to 0\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>≡<!-- ≡ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B\\equiv 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, under minimal conditions on the boundary of domain and on nonlinearity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Finally, due to these estimates, we solve the existence problems with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B left-parenthesis u comma nabla u right-parenthesis equals StartAbsoluteValue nabla u EndAbsoluteValue Superscript q\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>q</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B(u,\\nabla u)=|\\nabla u|^q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">q>1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/memo/1449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 32
Abstract
In this memoir, we study the existence and regularity of the quasilinear parabolic equations: ut−div(A(x,t,∇u))=B(u,∇u)+μ,\begin{equation*} u_t-\operatorname {div}(A(x,t,\nabla u))=B(u,\nabla u)+\mu , \end{equation*} in either RN+1\mathbb {R}^{N+1} or RN×(0,∞)\mathbb {R}^N\times (0,\infty ) or on a bounded domain Ω×(0,T)⊂RN+1\Omega \times (0,T)\subset \mathbb {R}^{N+1} where N≥2N\geq 2. We shall assume that the nonlinearity AA fulfills standard growth conditions, the function BB is a continuous and μ\mu is a radon measure. Our first task is to establish the existence results with B(u,∇u)=±|u|q−1uB(u,\nabla u)=\pm |u|^{q-1}u, for q>1q>1. We next obtain global weighted-Lorentz, Lorentz-Morrey and Capacitary estimates on gradient of solutions with B≡0B\equiv 0, under minimal conditions on the boundary of domain and on nonlinearity AA. Finally, due to these estimates, we solve the existence problems with B(u,∇u)=|∇u|qB(u,\nabla u)=|\nabla u|^q for q>1q>1.