Potential Estimates and Quasilinear Parabolic Equations with Measure Data

IF 2 4区 数学 Q1 MATHEMATICS
Quoc Hung Nguyen
{"title":"Potential Estimates and Quasilinear Parabolic Equations with Measure Data","authors":"Quoc Hung Nguyen","doi":"10.1090/memo/1449","DOIUrl":null,"url":null,"abstract":"In this memoir, we study the existence and regularity of the quasilinear parabolic equations: <disp-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"u Subscript t Baseline minus d i v left-parenthesis upper A left-parenthesis x comma t comma nabla u right-parenthesis right-parenthesis equals upper B left-parenthesis u comma nabla u right-parenthesis plus mu comma\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>u</mml:mi> <mml:mi>t</mml:mi> </mml:msub> <mml:mo>−<!-- − --></mml:mo> <mml:mi>div</mml:mi> <mml:mo>⁡<!-- ⁡ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>t</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>+</mml:mo> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\begin{equation*} u_t-\\operatorname {div}(A(x,t,\\nabla u))=B(u,\\nabla u)+\\mu , \\end{equation*}</mml:annotation> </mml:semantics> </mml:math> </disp-formula> in either <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript upper N plus 1\"> <mml:semantics> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^{N+1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript upper N Baseline times left-parenthesis 0 comma normal infinity right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mi>N</mml:mi> </mml:msup> <mml:mo>×<!-- × --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^N\\times (0,\\infty )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or on a bounded domain <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper Omega times left-parenthesis 0 comma upper T right-parenthesis subset-of double-struck upper R Superscript upper N plus 1\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"normal\">Ω<!-- Ω --></mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>⊂<!-- ⊂ --></mml:mo> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>N</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\Omega \\times (0,T)\\subset \\mathbb {R}^{N+1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper N greater-than-or-equal-to 2\"> <mml:semantics> <mml:mrow> <mml:mi>N</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">N\\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We shall assume that the nonlinearity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> fulfills standard growth conditions, the function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B\"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding=\"application/x-tex\">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a continuous and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"mu\"> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a radon measure. Our first task is to establish the existence results with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B left-parenthesis u comma nabla u right-parenthesis equals plus-or-minus StartAbsoluteValue u EndAbsoluteValue Superscript q minus 1 Baseline u\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mo>±<!-- ± --></mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi>q</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mi>u</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B(u,\\nabla u)=\\pm |u|^{q-1}u</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">q&gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We next obtain global weighted-Lorentz, Lorentz-Morrey and Capacitary estimates on gradient of solutions with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B identical-to 0\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo>≡<!-- ≡ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B\\equiv 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, under minimal conditions on the boundary of domain and on nonlinearity <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Finally, due to these estimates, we solve the existence problems with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper B left-parenthesis u comma nabla u right-parenthesis equals StartAbsoluteValue nabla u EndAbsoluteValue Superscript q\"> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>u</mml:mi> <mml:mo>,</mml:mo> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi mathvariant=\"normal\">∇<!-- ∇ --></mml:mi> <mml:mi>u</mml:mi> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mo stretchy=\"false\">|</mml:mo> </mml:mrow> <mml:mi>q</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">B(u,\\nabla u)=|\\nabla u|^q</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"q greater-than 1\"> <mml:semantics> <mml:mrow> <mml:mi>q</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">q&gt;1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":"323 ","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/memo/1449","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 32

Abstract

In this memoir, we study the existence and regularity of the quasilinear parabolic equations: u t div ( A ( x , t , u ) ) = B ( u , u ) + μ , \begin{equation*} u_t-\operatorname {div}(A(x,t,\nabla u))=B(u,\nabla u)+\mu , \end{equation*} in either R N + 1 \mathbb {R}^{N+1} or R N × ( 0 , ) \mathbb {R}^N\times (0,\infty ) or on a bounded domain Ω × ( 0 , T ) R N + 1 \Omega \times (0,T)\subset \mathbb {R}^{N+1} where N 2 N\geq 2 . We shall assume that the nonlinearity A A fulfills standard growth conditions, the function B B is a continuous and μ \mu is a radon measure. Our first task is to establish the existence results with B ( u , u ) = ± | u | q 1 u B(u,\nabla u)=\pm |u|^{q-1}u , for q > 1 q>1 . We next obtain global weighted-Lorentz, Lorentz-Morrey and Capacitary estimates on gradient of solutions with B 0 B\equiv 0 , under minimal conditions on the boundary of domain and on nonlinearity A A . Finally, due to these estimates, we solve the existence problems with B ( u , u ) = | u | q B(u,\nabla u)=|\nabla u|^q for q > 1 q>1 .
具有测量数据的势估计和拟线性抛物方程
在这篇回忆录中,我们研究了拟线性抛物方程的存在性和正则性:u t−div (A (x, t,∇u)) = B (u,∇u) + μ, \begin{equation*} u_t-\operatorname {div}(A(x,t,\nabla u))=B(u,\nabla u)+\mu , \end{equation*}在R N+1 \mathbb R{^}N+1{或R N ×(0,∞)}\mathbb R{^N }\times (0, \infty)或在有界域Ω x (0, t)∧R N+1 \Omega\times (0, t) \subset\mathbb R{^}N+1{其中N≥2 N }\geq 2。我们假设非线性A A满足标准生长条件,函数B B是连续的,μ \mu是氡测度。我们的第一个任务是建立B(u,∇u)=±|u| q−1u B(u, \nabla u)= \pm |u|^{q-1u}的存在性结果,对于q &gt;1 &gt;在最小条件下,在域边界和非线性A A上,我们得到了B≡0 B \equiv 0解梯度的全局加权lorentz、Lorentz-Morrey和Capacitary估计。最后,由于这些估计,我们解决了B(u,∇u)=|∇u| q B(u, \nabla u)=| \nabla u|^q对于q &gt的存在性问题;1 &gt;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信