{"title":"Statistical dynamics of a hard sphere gas: fluctuating Boltzmann equation and large deviations","authors":"Thierry Bodineau, Isabelle Gallagher, Laure Saint-Raymond, Sergio Simonella","doi":"10.4007/annals.2023.198.3.3","DOIUrl":null,"url":null,"abstract":"We present a mathematical theory of dynamical fluctuations for the hard sphere gas in the Boltzmann-Grad limit. We prove that (1) fluctuations of the empirical measure from the solution of the Boltzmann equation, scaled with the square root of the average number of particles, converge to a Gaussian process driven by the fluctuating Boltzmann equation, as predicted by Spohn; (2) large deviations are exponentially small in the average number of particles and are characterized, under regularity assumptions, by a large deviation functional as previously obtained by Rezakhanlou for dynamics with stochastic collisions. The results are valid away from thermal equilibrium, but only for short times. Our strategy is based on uniform a priori bounds on the cumulant generating function, characterizing the fine structure of the small correlations.","PeriodicalId":8134,"journal":{"name":"Annals of Mathematics","volume":"390 ","pages":"0"},"PeriodicalIF":5.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4007/annals.2023.198.3.3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 25
Abstract
We present a mathematical theory of dynamical fluctuations for the hard sphere gas in the Boltzmann-Grad limit. We prove that (1) fluctuations of the empirical measure from the solution of the Boltzmann equation, scaled with the square root of the average number of particles, converge to a Gaussian process driven by the fluctuating Boltzmann equation, as predicted by Spohn; (2) large deviations are exponentially small in the average number of particles and are characterized, under regularity assumptions, by a large deviation functional as previously obtained by Rezakhanlou for dynamics with stochastic collisions. The results are valid away from thermal equilibrium, but only for short times. Our strategy is based on uniform a priori bounds on the cumulant generating function, characterizing the fine structure of the small correlations.
期刊介绍:
The Annals of Mathematics is published bimonthly by the Department of Mathematics at Princeton University with the cooperation of the Institute for Advanced Study. Founded in 1884 by Ormond Stone of the University of Virginia, the journal was transferred in 1899 to Harvard University, and in 1911 to Princeton University. Since 1933, the Annals has been edited jointly by Princeton University and the Institute for Advanced Study.