Finite time extinction for a diffusion equation with spatially inhomogeneous strong absorption

IF 1.8 4区 数学 Q1 MATHEMATICS
Razvan Gabriel Iagar, Philippe Laurençot
{"title":"Finite time extinction for a diffusion equation with spatially inhomogeneous strong absorption","authors":"Razvan Gabriel Iagar, Philippe Laurençot","doi":"10.57262/die036-1112-1005","DOIUrl":null,"url":null,"abstract":"The phenomenon of finite time extinction of bounded and non-negative solutions to the diffusion equation with strong absorption $$ \\partial_t u-\\Delta u^m+|x|^{\\sigma}u^q=0, \\qquad (t,x)\\in(0,\\infty)\\times \\mathbb R ^N, $$ with $m\\geq1$, $q\\in(0,1)$ and $\\sigma > 0$, is addressed. Introducing the critical exponent $\\sigma^* := 2(1-q)/(m-1)$ for $m > 1$ and $\\sigma^*=\\infty$ for $m=1$, extinction in finite time is known to take place for $\\sigma\\in [0,\\sigma^*)$ and an alternative proof is provided therein. When $m > 1$ and $\\sigma\\ge \\sigma^*$, the occurrence of finite time extinction is proved for a specific class of initial conditions, thereby supplementing results on non-extinction that are available in that range of $\\sigma$ and showing their sharpness.","PeriodicalId":50581,"journal":{"name":"Differential and Integral Equations","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential and Integral Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57262/die036-1112-1005","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The phenomenon of finite time extinction of bounded and non-negative solutions to the diffusion equation with strong absorption $$ \partial_t u-\Delta u^m+|x|^{\sigma}u^q=0, \qquad (t,x)\in(0,\infty)\times \mathbb R ^N, $$ with $m\geq1$, $q\in(0,1)$ and $\sigma > 0$, is addressed. Introducing the critical exponent $\sigma^* := 2(1-q)/(m-1)$ for $m > 1$ and $\sigma^*=\infty$ for $m=1$, extinction in finite time is known to take place for $\sigma\in [0,\sigma^*)$ and an alternative proof is provided therein. When $m > 1$ and $\sigma\ge \sigma^*$, the occurrence of finite time extinction is proved for a specific class of initial conditions, thereby supplementing results on non-extinction that are available in that range of $\sigma$ and showing their sharpness.
空间非均匀强吸收扩散方程的有限时间消光
讨论了具有强吸收的扩散方程$$ \partial_t u-\Delta u^m+|x|^{\sigma}u^q=0, \qquad (t,x)\in(0,\infty)\times \mathbb R ^N, $$ ($m\geq1$, $q\in(0,1)$和$\sigma > 0$)的有界非负解的有限时间消光现象。引入$m > 1$的临界指数$\sigma^* := 2(1-q)/(m-1)$和$m=1$的临界指数$\sigma^*=\infty$,已知$\sigma\in [0,\sigma^*)$在有限时间内发生消光,并给出了另一种证明。当$m > 1$和$\sigma\ge \sigma^*$时,证明了特定的一类初始条件存在有限时间消光,从而补充了在$\sigma$范围内的非消光结果,显示了它们的明晰性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Differential and Integral Equations
Differential and Integral Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Differential and Integral Equations will publish carefully selected research papers on mathematical aspects of differential and integral equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new, and of interest to a substantial number of mathematicians working in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信