{"title":"Deep Learning for Identifying Iran’s Cultural Heritage Buildings in Need of Conservation Using Image Classification and Grad-CAM","authors":"Mahdi Bahrami, Amir Albadvi","doi":"10.1145/3631130","DOIUrl":null,"url":null,"abstract":"The cultural heritage buildings (CHB), which are part of mankind’s history and identity, are in constant danger of damage, or in extreme cases, complete destruction. Thus, it’s of utmost importance to preserve them by identifying the existent, or presumptive, defects using novel methods so that renovation processes can be done in a timely manner and with higher accuracy. The main goal of this research is to use new Deep Learning (DL) methods in the process of preserving CHBs (situated in Iran); a goal that has been neglected especially in developing countries such as Iran, as these countries still preserve their CHBs using manual, and even archaic, methods that need direct human supervision. Having proven their effectiveness and performance when it comes to processing images, the Convolutional Neural Networks (CNNs) are a staple in computer vision (CV) literacy and this paper is not exempt. When lacking enough CHB images, training a CNN from scratch would be very difficult and prone to overfitting; that’s why we opted to use a technique called transfer learning (TL) in which we used pre-trained ResNet, MobileNet, and Inception networks, for classification. Even more, the Grad-CAM was utilized to localize the defects to some extent. The final results were very favorable, compared to similar papers. We reached 94% in Precision, Recall, and F1-Score with our fine-tuned MobileNetV2 model, which showed a 4-5% improvement over other similar works. The final proposed model can pave the way for moving from manual to unmanned CHB conservation, hence an increase in accuracy and a decrease in human-induced errors.","PeriodicalId":54310,"journal":{"name":"ACM Journal on Computing and Cultural Heritage","volume":"143 ","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Journal on Computing and Cultural Heritage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3631130","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The cultural heritage buildings (CHB), which are part of mankind’s history and identity, are in constant danger of damage, or in extreme cases, complete destruction. Thus, it’s of utmost importance to preserve them by identifying the existent, or presumptive, defects using novel methods so that renovation processes can be done in a timely manner and with higher accuracy. The main goal of this research is to use new Deep Learning (DL) methods in the process of preserving CHBs (situated in Iran); a goal that has been neglected especially in developing countries such as Iran, as these countries still preserve their CHBs using manual, and even archaic, methods that need direct human supervision. Having proven their effectiveness and performance when it comes to processing images, the Convolutional Neural Networks (CNNs) are a staple in computer vision (CV) literacy and this paper is not exempt. When lacking enough CHB images, training a CNN from scratch would be very difficult and prone to overfitting; that’s why we opted to use a technique called transfer learning (TL) in which we used pre-trained ResNet, MobileNet, and Inception networks, for classification. Even more, the Grad-CAM was utilized to localize the defects to some extent. The final results were very favorable, compared to similar papers. We reached 94% in Precision, Recall, and F1-Score with our fine-tuned MobileNetV2 model, which showed a 4-5% improvement over other similar works. The final proposed model can pave the way for moving from manual to unmanned CHB conservation, hence an increase in accuracy and a decrease in human-induced errors.
期刊介绍:
ACM Journal on Computing and Cultural Heritage (JOCCH) publishes papers of significant and lasting value in all areas relating to the use of information and communication technologies (ICT) in support of Cultural Heritage. The journal encourages the submission of manuscripts that demonstrate innovative use of technology for the discovery, analysis, interpretation and presentation of cultural material, as well as manuscripts that illustrate applications in the Cultural Heritage sector that challenge the computational technologies and suggest new research opportunities in computer science.