Optimising Electric Bus Departure Interval Considering Stochastic Traffic Conditions

IF 0.8 4区 工程技术 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY
Zhenyang Qiu, Xiaowei Hu, Shuai Song, Yu Wang
{"title":"Optimising Electric Bus Departure Interval Considering Stochastic Traffic Conditions","authors":"Zhenyang Qiu, Xiaowei Hu, Shuai Song, Yu Wang","doi":"10.7307/ptt.v35i5.219","DOIUrl":null,"url":null,"abstract":"Electric buses (EBs) have attracted more and more attention in recent years because of their energy-saving and pollution-free characteristics. However, very few studies have considered the impact of stochastic traffic conditions on their operations. This paper focuses on the departure interval optimisation of EBs which is a critical problem in the operations. We consider the stochastic traffic conditions in the operations and establish a departure interval optimisation model. The objective function aims at minimising passenger travel costs and enterprise operation costs, including waiting time costs, congestion costs, energy consumption costs and operational fixed costs. To solve this problem, a genetic algorithm (GA) based on fitness adjustment crossover and mutation rate is proposed. Based on the Harbin bus dataset, we find that improved GA performance is 4.481% higher, and it can solve the models more accurately and efficiently. Compared with the current situation, the optimisation model reduces passenger travel costs by 20.2% and helps improve passenger travel quality. Under stochastic traffic conditions, total cost change is small, but passenger travel costs increase significantly. This indicates the high impact degree of random traffic conditions on passenger travel. In addition, a sensitivity analysis is conducted to provide suggestions for improving the EBs operation and management.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":"20 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7307/ptt.v35i5.219","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Electric buses (EBs) have attracted more and more attention in recent years because of their energy-saving and pollution-free characteristics. However, very few studies have considered the impact of stochastic traffic conditions on their operations. This paper focuses on the departure interval optimisation of EBs which is a critical problem in the operations. We consider the stochastic traffic conditions in the operations and establish a departure interval optimisation model. The objective function aims at minimising passenger travel costs and enterprise operation costs, including waiting time costs, congestion costs, energy consumption costs and operational fixed costs. To solve this problem, a genetic algorithm (GA) based on fitness adjustment crossover and mutation rate is proposed. Based on the Harbin bus dataset, we find that improved GA performance is 4.481% higher, and it can solve the models more accurately and efficiently. Compared with the current situation, the optimisation model reduces passenger travel costs by 20.2% and helps improve passenger travel quality. Under stochastic traffic conditions, total cost change is small, but passenger travel costs increase significantly. This indicates the high impact degree of random traffic conditions on passenger travel. In addition, a sensitivity analysis is conducted to provide suggestions for improving the EBs operation and management.
考虑随机交通条件的电动客车发车间隔优化
近年来,电动公交车以其节能、无污染的特点受到越来越多的关注。然而,很少有研究考虑到随机交通条件对其运行的影响。本文重点研究了电子束的出发区间优化问题,这是电子束运行中的一个关键问题。考虑随机交通条件,建立了发车间隔优化模型。目标函数旨在使乘客出行成本和企业运营成本最小化,包括等待时间成本、拥堵成本、能源消耗成本和运营固定成本。为了解决这一问题,提出了一种基于适应度调整交叉和突变率的遗传算法。基于哈尔滨公交数据集,我们发现改进后的遗传算法性能提高了4.481%,可以更准确、更高效地求解模型。与现状相比,优化模型使旅客出行成本降低20.2%,有利于提高旅客出行质量。在随机交通条件下,总成本变化较小,但乘客出行成本明显增加。这表明随机交通状况对旅客出行的影响程度较高。此外,还进行了敏感性分析,为EBs的运营和管理提供改进建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Promet-Traffic & Transportation
Promet-Traffic & Transportation 工程技术-运输科技
CiteScore
1.90
自引率
20.00%
发文量
62
审稿时长
3 months
期刊介绍: This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology. The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee. The received papers are subject to peer review in accordance with the recommendations for international scientific journals. The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering. The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信