Optomechanically induced grating in a graphene based nanocavity

IF 1.2 4区 物理与天体物理 Q4 OPTICS
B S Abdullaeva, T Alawsi, A Alawadi, A Alsalamy
{"title":"Optomechanically induced grating in a graphene based nanocavity","authors":"B S Abdullaeva, T Alawsi, A Alawadi, A Alsalamy","doi":"10.1088/1555-6611/ad04c8","DOIUrl":null,"url":null,"abstract":"Abstract The optomechanically induced grating (OMIG) in a nanocavity using a bilayer graphene system as the intracavity medium has been proposed. We investigate the effects of different parameters on the Fraunhofer diffraction pattern of the incident probe light. Here, one mirror of the nanocavity is considered coherently driven by the standing wave coupling and probe fields, whereas the second mirror has mechanical oscillation due to the radiation pressure. We consider interaction of bilayer graphene with the optomechanical cavity and show that OMIG can be obtained corresponding to output probe field frequency. Moreover, we find that under specific parametric conditions, most of the probe energy can transfer to the higher orders of the diffraction and only a small portion remains in the zero order.","PeriodicalId":17976,"journal":{"name":"Laser Physics","volume":"83 ","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1555-6611/ad04c8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The optomechanically induced grating (OMIG) in a nanocavity using a bilayer graphene system as the intracavity medium has been proposed. We investigate the effects of different parameters on the Fraunhofer diffraction pattern of the incident probe light. Here, one mirror of the nanocavity is considered coherently driven by the standing wave coupling and probe fields, whereas the second mirror has mechanical oscillation due to the radiation pressure. We consider interaction of bilayer graphene with the optomechanical cavity and show that OMIG can be obtained corresponding to output probe field frequency. Moreover, we find that under specific parametric conditions, most of the probe energy can transfer to the higher orders of the diffraction and only a small portion remains in the zero order.
石墨烯基纳米腔中的光机械诱导光栅
摘要提出了一种以双层石墨烯系统作为腔内介质的纳米腔光机械诱导光栅(OMIG)。研究了不同参数对入射探针光的夫琅和费衍射图的影响。在这里,纳米腔的一面镜子被认为是由驻波耦合和探针场相干驱动的,而另一面镜子由于辐射压力而产生机械振荡。我们考虑了双层石墨烯与光机械腔的相互作用,并表明可以得到对应于输出探针场频率的OMIG。此外,我们发现在特定的参数条件下,大部分探针能量可以转移到衍射的高阶,只有一小部分留在零阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Laser Physics
Laser Physics 物理-光学
CiteScore
2.60
自引率
8.30%
发文量
127
审稿时长
2.2 months
期刊介绍: Laser Physics offers a comprehensive view of theoretical and experimental laser research and applications. Articles cover every aspect of modern laser physics and quantum electronics, emphasizing physical effects in various media (solid, gaseous, liquid) leading to the generation of laser radiation; peculiarities of propagation of laser radiation; problems involving impact of laser radiation on various substances and the emerging physical effects, including coherent ones; the applied use of lasers and laser spectroscopy; the processing and storage of information; and more. The full list of subject areas covered is as follows: -physics of lasers- fibre optics and fibre lasers- quantum optics and quantum information science- ultrafast optics and strong-field physics- nonlinear optics- physics of cold trapped atoms- laser methods in chemistry, biology, medicine and ecology- laser spectroscopy- novel laser materials and lasers- optics of nanomaterials- interaction of laser radiation with matter- laser interaction with solids- photonics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信