{"title":"UNCERTAINTY RELATIONS AND INFORMATION LOSS FOR SPIN-1/2 MEASUREMENTS","authors":"Alberto Barchielli, Matteo Gregoratti","doi":"10.1142/9789811275999_0007","DOIUrl":null,"url":null,"abstract":"We formulate entropic measurements uncertainty relations (MURs) for a spin-1/2 system. When incompatible observables are approximatively jointly measured, we use relative entropy to quantify the information lost in approximation and we prove positive lower bounds for such a loss: there is an unavoidable information loss. Firstly we allow only for covariant approximate joint measurements and we find state-dependent MURs for two or three orthogonal spin-1/2 components. Secondly we consider any possible approximate joint measurement and we find state-independent MURs for two or three spin-1/2 components. In particular we study how MURs depend on the angle between two spin directions. Finally, we extend our approach to infinitely many incompatible observables, namely to the spin components in all possible directions. In every scenario, we always consider also the characterization of the optimal approximate joint measurements.","PeriodicalId":50366,"journal":{"name":"Infinite Dimensional Analysis Quantum Probability and Related Topics","volume":"32 8","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infinite Dimensional Analysis Quantum Probability and Related Topics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811275999_0007","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
We formulate entropic measurements uncertainty relations (MURs) for a spin-1/2 system. When incompatible observables are approximatively jointly measured, we use relative entropy to quantify the information lost in approximation and we prove positive lower bounds for such a loss: there is an unavoidable information loss. Firstly we allow only for covariant approximate joint measurements and we find state-dependent MURs for two or three orthogonal spin-1/2 components. Secondly we consider any possible approximate joint measurement and we find state-independent MURs for two or three spin-1/2 components. In particular we study how MURs depend on the angle between two spin directions. Finally, we extend our approach to infinitely many incompatible observables, namely to the spin components in all possible directions. In every scenario, we always consider also the characterization of the optimal approximate joint measurements.
期刊介绍:
In the past few years the fields of infinite dimensional analysis and quantum probability have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. The number of first-class papers in these fields has grown at the same rate. This is currently the only journal which is devoted to these fields.
It constitutes an essential and central point of reference for the large number of mathematicians, mathematical physicists and other scientists who have been drawn into these areas. Both fields have strong interdisciplinary nature, with deep connection to, for example, classical probability, stochastic analysis, mathematical physics, operator algebras, irreversibility, ergodic theory and dynamical systems, quantum groups, classical and quantum stochastic geometry, quantum chaos, Dirichlet forms, harmonic analysis, quantum measurement, quantum computer, etc. The journal reflects this interdisciplinarity and welcomes high quality papers in all such related fields, particularly those which reveal connections with the main fields of this journal.