{"title":"Dimension-free Harnack inequalities for conjugate heat equations and their applications to geometric flows","authors":"Li-Juan Cheng, Anton Thalmaier","doi":"10.2140/apde.2023.16.1589","DOIUrl":null,"url":null,"abstract":"Let $M$ be a differentiable manifold endowed with a family of complete Riemannian metrics $g(t)$ evolving under a geometric flow over the time interval $[0,T[$. In this article, we give a probabilistic representation for the derivative of the corresponding conjugate semigroup on $M$ which is generated by a Schr\\\"{o}dinger type operator. With the help of this derivative formula, we derive fundamental Harnack type inequalities in the setting of evolving Riemannian manifolds. In particular, we establish a dimension-free Harnack inequality and show how it can be used to achieve heat kernel upper bounds in the setting of moving metrics. Moreover, by means of the supercontractivity of the conjugate semigroup, we obtain a family of canonical log-Sobolev inequalities. We discuss and apply these results both in the case of the so-called modified Ricci flow and in the case of general geometric flows.","PeriodicalId":49277,"journal":{"name":"Analysis & PDE","volume":"110 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis & PDE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/apde.2023.16.1589","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $M$ be a differentiable manifold endowed with a family of complete Riemannian metrics $g(t)$ evolving under a geometric flow over the time interval $[0,T[$. In this article, we give a probabilistic representation for the derivative of the corresponding conjugate semigroup on $M$ which is generated by a Schr\"{o}dinger type operator. With the help of this derivative formula, we derive fundamental Harnack type inequalities in the setting of evolving Riemannian manifolds. In particular, we establish a dimension-free Harnack inequality and show how it can be used to achieve heat kernel upper bounds in the setting of moving metrics. Moreover, by means of the supercontractivity of the conjugate semigroup, we obtain a family of canonical log-Sobolev inequalities. We discuss and apply these results both in the case of the so-called modified Ricci flow and in the case of general geometric flows.
期刊介绍:
APDE aims to be the leading specialized scholarly publication in mathematical analysis. The full editorial board votes on all articles, accounting for the journal’s exceptionally high standard and ensuring its broad profile.