Alaa Nuri Merza, Aram Mohammed Raheem, Ibrahim Jalal Naser, Mohammed Omar Ibrahim, Najat Qader Omar
{"title":"Implementing GIS and linear regression models to investigate partial building failures","authors":"Alaa Nuri Merza, Aram Mohammed Raheem, Ibrahim Jalal Naser, Mohammed Omar Ibrahim, Najat Qader Omar","doi":"10.22630/srees.4857","DOIUrl":null,"url":null,"abstract":"One of the most dangerous field problems in the civil engineering discipline is the suddenly developed cracks in the building, which could be caused by the swelling of the subsurface soil. Thus, this work has focused on employing a procedure in the geographic information system known as the inverse distance weighted (IDW) technique, to analyze the extent of cracks in a residential complex in the city of Kirkuk in Iraq using the physical and chemical soil data for seven boreholes from the field of the study. Physical soil parameters such as liquid limit (LL), gravel, sand, silt and clay percentages were characterized first, followed by chemical properties such as gypsum content (GYP), total suspended solids (TSS), potential of hydrogen (pH), and organic content (ORG). Furthermore, statistical studies such as plasticity index (PI) and soil characteristics association, linear single, and various linear multi-regression models were used. The data analysis shows that there are significantly positive and negative relationships between PI as a swelling indicator and the physical and chemical soil properties, although weak to moderate correlations were observed between PI and these variables. The PI values were accurately predicted by the proposed linear multi-regression models of the physical and integrated physical and chemical soil characteristics, with multiple R values of 0.92 for both models. As a result, the suggested statistical models can provide complete geographic and mechanical explanations for the crack sources in the investigated residential complex.","PeriodicalId":38397,"journal":{"name":"Scientific Review Engineering and Environmental Sciences","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Review Engineering and Environmental Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/srees.4857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
One of the most dangerous field problems in the civil engineering discipline is the suddenly developed cracks in the building, which could be caused by the swelling of the subsurface soil. Thus, this work has focused on employing a procedure in the geographic information system known as the inverse distance weighted (IDW) technique, to analyze the extent of cracks in a residential complex in the city of Kirkuk in Iraq using the physical and chemical soil data for seven boreholes from the field of the study. Physical soil parameters such as liquid limit (LL), gravel, sand, silt and clay percentages were characterized first, followed by chemical properties such as gypsum content (GYP), total suspended solids (TSS), potential of hydrogen (pH), and organic content (ORG). Furthermore, statistical studies such as plasticity index (PI) and soil characteristics association, linear single, and various linear multi-regression models were used. The data analysis shows that there are significantly positive and negative relationships between PI as a swelling indicator and the physical and chemical soil properties, although weak to moderate correlations were observed between PI and these variables. The PI values were accurately predicted by the proposed linear multi-regression models of the physical and integrated physical and chemical soil characteristics, with multiple R values of 0.92 for both models. As a result, the suggested statistical models can provide complete geographic and mechanical explanations for the crack sources in the investigated residential complex.
期刊介绍:
Scientific Review Engineering and Environmental Sciences [Przegląd Naukowy Inżynieria i Kształtowanie Środowiska] covers broad area of knowledge and practice on fields such as: sustainable development, landscaping of non-urbanized lands, environmental engineering, construction projects engineering land management, protection and land reclamation, environmental impact of investments, ecology, hydrology and water management, ground-water monitoring and restoration, geotechnical engineering, meteorology and connecting subjects. Authors are welcome to submit theoretical and practice-oriented papers containing detailed case studies within above mentioned disciplines. However, theoretical papers should contain part with practical application of the theory presented. Papers (in Polish or English languages) are accepted for publication after obtaining positive opinions of two reviewers. Papers published elsewhere are not accepted.