Raoni Avilez Fiedler, Francisco Bernardo Lovato Eick
{"title":"Classificação de Imagens Utilizando Fusão de Sensores Termal e Visível","authors":"Raoni Avilez Fiedler, Francisco Bernardo Lovato Eick","doi":"10.55972/spectrum.v24i1.396","DOIUrl":null,"url":null,"abstract":"Utilizando uma câmera com sensor duplo (visível e termal), este trabalho avalia a alteração na exatidão global de quatro classes de interesse utilizando-se diferentes composições de canais nas imagens analisadas. São testadas as composições RGB e RGBI (composição RGB mais canal infravermelho). Os resultados são comparados utilizando os algoritmos k vizinhos mais próximos (k-NN) e máquina de vetores de suporte (SVM). Os resultados experimentais indicam que o uso da composição RGBI aumenta a acurácia na classificação em 9,7%, no k-NN, e 1,9% no SVM.","PeriodicalId":270597,"journal":{"name":"Aplicações Operacionais em Áreas de Defesa","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aplicações Operacionais em Áreas de Defesa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55972/spectrum.v24i1.396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Utilizando uma câmera com sensor duplo (visível e termal), este trabalho avalia a alteração na exatidão global de quatro classes de interesse utilizando-se diferentes composições de canais nas imagens analisadas. São testadas as composições RGB e RGBI (composição RGB mais canal infravermelho). Os resultados são comparados utilizando os algoritmos k vizinhos mais próximos (k-NN) e máquina de vetores de suporte (SVM). Os resultados experimentais indicam que o uso da composição RGBI aumenta a acurácia na classificação em 9,7%, no k-NN, e 1,9% no SVM.