Transformation operators for impedance Sturm–Liouville operators on the line

Q3 Mathematics
M. Kazanivskiy, Ya. Mykytyuk, N. Sushchyk
{"title":"Transformation operators for impedance Sturm–Liouville operators on the line","authors":"M. Kazanivskiy, Ya. Mykytyuk, N. Sushchyk","doi":"10.30970/ms.60.1.79-98","DOIUrl":null,"url":null,"abstract":"In the Hilbert space $H:=L_2(\\mathbb{R})$, we consider the impedance Sturm--Liouville operator $T:H\\to H$ generated by the differential expression $ -p\\frac{d}{dx}{\\frac1{p^2}}\\frac{d}{dx}p$, where the function $p:\\mathbb{R}\\to\\mathbb{R}_+$ is of bounded variation on $\\mathbb{R}$ and $\\inf_{x\\in\\mathbb{R}} p(x)>0$. Existence of the transformation operator for the operator $T$ and its properties are studied.
 In the paper, we suggest an efficient parametrization of the impedance function p in term of a real-valued bounded measure $\\mu\\in \\boldsymbol M$ via$p_\\mu(x):= e^{\\mu([x,\\infty))}, x\\in\\mathbb{R}.$For a measure $\\mu\\in \\boldsymbol M$, we establish existence of the transformation operator for the Sturm--Liouville operator $T_\\mu$, which is constructed with the function $p_\\mu$. Continuous dependence of the operator $T_\\mu$ on $\\mu$ is also proved. As a consequence, we deduce that the operator $T_\\mu$ is unitarily equivalent to the operator $T_0:=-d^2/dx^2$.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.60.1.79-98","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In the Hilbert space $H:=L_2(\mathbb{R})$, we consider the impedance Sturm--Liouville operator $T:H\to H$ generated by the differential expression $ -p\frac{d}{dx}{\frac1{p^2}}\frac{d}{dx}p$, where the function $p:\mathbb{R}\to\mathbb{R}_+$ is of bounded variation on $\mathbb{R}$ and $\inf_{x\in\mathbb{R}} p(x)>0$. Existence of the transformation operator for the operator $T$ and its properties are studied. In the paper, we suggest an efficient parametrization of the impedance function p in term of a real-valued bounded measure $\mu\in \boldsymbol M$ via$p_\mu(x):= e^{\mu([x,\infty))}, x\in\mathbb{R}.$For a measure $\mu\in \boldsymbol M$, we establish existence of the transformation operator for the Sturm--Liouville operator $T_\mu$, which is constructed with the function $p_\mu$. Continuous dependence of the operator $T_\mu$ on $\mu$ is also proved. As a consequence, we deduce that the operator $T_\mu$ is unitarily equivalent to the operator $T_0:=-d^2/dx^2$.
变换算子为阻抗Sturm-Liouville算子
在Hilbert空间$H:=L_2(\mathbb{R})$中,我们考虑由微分表达式$ -p\frac{d}{dx}{\frac1{p^2}}\frac{d}{dx}p$产生的阻抗Sturm—Liouville算子$T:H\to H$,其中函数$p:\mathbb{R}\to\mathbb{R}_+$在$\mathbb{R}$和$\inf_{x\in\mathbb{R}} p(x)>0$上有界变化。研究了算子$T$的变换算子的存在性及其性质。
本文通过$p_\mu(x):= e^{\mu([x,\infty))}, x\in\mathbb{R}.$提出了阻抗函数p用实值有界测度$\mu\in \boldsymbol M$有效参数化的方法。对于测度$\mu\in \boldsymbol M$,我们建立了Sturm—Liouville算子$T_\mu$的变换算子的存在性,该变换算子由函数$p_\mu$构造。证明了算子$T_\mu$对$\mu$的连续依赖。因此,我们推导出运算符$T_\mu$与运算符$T_0:=-d^2/dx^2$是一元等价的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信