Free products of cyclic groups in groups of infinite unitriangular matrices

Q3 Mathematics
A. Oliynyk
{"title":"Free products of cyclic groups in groups of infinite unitriangular matrices","authors":"A. Oliynyk","doi":"10.30970/ms.60.1.28-33","DOIUrl":null,"url":null,"abstract":"Groups of infinite unitriangular matrices over associative unitary rings are considered. These groups naturally act on infinite dimensional free modules over underlying rings. They are profinite in case underlying rings are finite. Inspired by their connection with groups defined by finite automata the problem to construct faithful representations of free products of groups by banded infinite unitriangular matrices is considered.For arbitrary prime p a sufficient conditions on a finite set of banded infinite unitriangular matrices over unitary associative rings of characteristic p under which they generate the free product of cyclic p-groups is given. The conditions are based on certain properties of the actions on finite dimensional free modules over underlying rings.It is shown that these conditions are satisfied. For arbitrary free product of finite number of cyclic p-groups constructive examples of the sets of infinite unitriangular matrices over unitar associative rings of characteristic p that generate given free product are presented. These infinite matrices are constructed from finite dimensional ones that are nilpotent Jordan blocks.A few open questions concerning properties of presented examples and other types of faithful representations are formulated.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.60.1.28-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Groups of infinite unitriangular matrices over associative unitary rings are considered. These groups naturally act on infinite dimensional free modules over underlying rings. They are profinite in case underlying rings are finite. Inspired by their connection with groups defined by finite automata the problem to construct faithful representations of free products of groups by banded infinite unitriangular matrices is considered.For arbitrary prime p a sufficient conditions on a finite set of banded infinite unitriangular matrices over unitary associative rings of characteristic p under which they generate the free product of cyclic p-groups is given. The conditions are based on certain properties of the actions on finite dimensional free modules over underlying rings.It is shown that these conditions are satisfied. For arbitrary free product of finite number of cyclic p-groups constructive examples of the sets of infinite unitriangular matrices over unitar associative rings of characteristic p that generate given free product are presented. These infinite matrices are constructed from finite dimensional ones that are nilpotent Jordan blocks.A few open questions concerning properties of presented examples and other types of faithful representations are formulated.
无穷单三角形矩阵群中循环群的自由积
研究了结合酉环上的无限单三角形矩阵群。这些群自然作用于底层环上的无限维自由模。如果下环是有限的,它们就是无限的。利用它们与有限自动机所定义的群的联系,研究了用带无限单棱矩阵构造群的自由积的忠实表示问题。对于任意素数p,给出了特征为p的酉结合环上的带无限酉三角形矩阵有限集生成循环p群自由积的充分条件。这些条件是基于下环上有限维自由模作用的某些性质。结果表明,这些条件都是满足的。对于有限个循环p群的任意自由积,给出了特征p的唯一结合环上的无限单三角形矩阵集生成给定自由积的构造性实例。这些无限矩阵是由有限维的幂零约旦块构成的。关于所提出的例子和其他类型的忠实表示的性质的几个开放问题被制定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信