Ehsan Azish, Ehsanolah Assareh, Behzad Azizimehr, Moonyong Lee
{"title":"Exergoeconomic analysis of an integrated electric power generation system based on biomass energy and Organic Rankine cycle","authors":"Ehsan Azish, Ehsanolah Assareh, Behzad Azizimehr, Moonyong Lee","doi":"10.1080/14484846.2023.2252641","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe present study investigates the thermodynamics analysis of a trigeneration system using a gasifier system. An Organic Rankine Cycle (ORC) system is used to heat recovery and consequently, supplying the cooling demand. The first and second laws of thermodynamics are used to energy and exergy analysis of the system. Some thermodynamic parameters which affect the system performance including combustion temperature, gasifier temperature, compressor isentropic efficiency, gas turbine isentropic efficiency, compressor pressure ratio, and ORC pressure are parametrically analysed and their contribution in improving the efficiency and economy of the system is investigated. To the sustainable performance of the combined system, we need an evolutionary algorithm to identify the optimum values of thermodynamic parameters that have an impact on system performance. Hence, the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm is used to find the best values of decision variables. The most striking result to emerge from the optimisation.optimisation is that implementing the MOPSO algorithm improves the exergy efficiency by 5.17% and reduces the total cost of the system by 1.9%.KEYWORDS: Gasifierbiomass energyOrganic Rankine cycleMOPSO algorithmexergoeconomic analysis Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.Additional informationNotes on contributorsEhsan AzishEhsan Azish is a PhD student in Mechanical Engineering, specializing in Energy Conversion at Dezful Azad University.Ehsanolah AssarehEhsanolah Assareh Assistant Professor (PhD) at YU University (South Korea) and IAUD University (Iran), specializing in Renewable Energy.Behzad AzizimehrBehzad Azizimehr is a PhD student in Mechanical Engineering, specializing in Energy Conversion, and he works as an engineer and supervisor for Solar Energy Systems at Gamma Energy Company.Moonyong LeeMoonyong Lee is a Professor in the School of Chemical Engineering at Yeungnam University, specializing in Process optimization.","PeriodicalId":8584,"journal":{"name":"Australian Journal of Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14484846.2023.2252641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTThe present study investigates the thermodynamics analysis of a trigeneration system using a gasifier system. An Organic Rankine Cycle (ORC) system is used to heat recovery and consequently, supplying the cooling demand. The first and second laws of thermodynamics are used to energy and exergy analysis of the system. Some thermodynamic parameters which affect the system performance including combustion temperature, gasifier temperature, compressor isentropic efficiency, gas turbine isentropic efficiency, compressor pressure ratio, and ORC pressure are parametrically analysed and their contribution in improving the efficiency and economy of the system is investigated. To the sustainable performance of the combined system, we need an evolutionary algorithm to identify the optimum values of thermodynamic parameters that have an impact on system performance. Hence, the Multi-Objective Particle Swarm Optimization (MOPSO) algorithm is used to find the best values of decision variables. The most striking result to emerge from the optimisation.optimisation is that implementing the MOPSO algorithm improves the exergy efficiency by 5.17% and reduces the total cost of the system by 1.9%.KEYWORDS: Gasifierbiomass energyOrganic Rankine cycleMOPSO algorithmexergoeconomic analysis Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.Additional informationNotes on contributorsEhsan AzishEhsan Azish is a PhD student in Mechanical Engineering, specializing in Energy Conversion at Dezful Azad University.Ehsanolah AssarehEhsanolah Assareh Assistant Professor (PhD) at YU University (South Korea) and IAUD University (Iran), specializing in Renewable Energy.Behzad AzizimehrBehzad Azizimehr is a PhD student in Mechanical Engineering, specializing in Energy Conversion, and he works as an engineer and supervisor for Solar Energy Systems at Gamma Energy Company.Moonyong LeeMoonyong Lee is a Professor in the School of Chemical Engineering at Yeungnam University, specializing in Process optimization.