Ab initio methods for polariton chemistry

IF 6.1 Q2 CHEMISTRY, PHYSICAL
Jonathan J. Foley, Jonathan F. McTague, A. Eugene DePrince
{"title":"<i>Ab initio</i> methods for polariton chemistry","authors":"Jonathan J. Foley, Jonathan F. McTague, A. Eugene DePrince","doi":"10.1063/5.0167243","DOIUrl":null,"url":null,"abstract":"Polariton chemistry exploits the strong interaction between quantized excitations in molecules and quantized photon states in optical cavities to affect chemical reactivity. Molecular polaritons have been experimentally realized by the coupling of electronic, vibrational, and rovibrational transitions to photon modes, which has spurred a tremendous theoretical effort to model and explain how polariton formation can influence chemistry. This tutorial review focuses on computational approaches for the electronic strong coupling problem through the combination of familiar techniques from ab initio electronic structure theory and cavity quantum electrodynamics, toward the goal of supplying predictive theories for polariton chemistry. Our aim is to emphasize the relevant theoretical details with enough clarity for newcomers to the field to follow, and to present simple and practical code examples to catalyze further development work.","PeriodicalId":72559,"journal":{"name":"Chemical physics reviews","volume":"36 1","pages":"0"},"PeriodicalIF":6.1000,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical physics reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0167243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 4

Abstract

Polariton chemistry exploits the strong interaction between quantized excitations in molecules and quantized photon states in optical cavities to affect chemical reactivity. Molecular polaritons have been experimentally realized by the coupling of electronic, vibrational, and rovibrational transitions to photon modes, which has spurred a tremendous theoretical effort to model and explain how polariton formation can influence chemistry. This tutorial review focuses on computational approaches for the electronic strong coupling problem through the combination of familiar techniques from ab initio electronic structure theory and cavity quantum electrodynamics, toward the goal of supplying predictive theories for polariton chemistry. Our aim is to emphasize the relevant theoretical details with enough clarity for newcomers to the field to follow, and to present simple and practical code examples to catalyze further development work.
极化化学的从头算方法
极化化学利用分子中量子化激发与光腔中量子化光子态之间的强相互作用来影响化学反应性。通过电子、振动和旋转振动跃迁到光子模式的耦合,已经在实验上实现了分子极化子,这激发了巨大的理论努力来建模和解释极化子的形成如何影响化学。本教程回顾了电子强耦合问题的计算方法,通过从头算电子结构理论和腔量子电动力学的熟悉技术的结合,旨在为极化化学提供预测理论。我们的目标是强调相关的理论细节,为该领域的新手提供足够清晰的思路,并提供简单实用的代码示例来促进进一步的开发工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信