The renormalized volume of a $4$-dimensional Ricci-flat ALE space

IF 1.3 1区 数学 Q1 MATHEMATICS
Olivier Biquard, Hans-Joachim Hein
{"title":"The renormalized volume of a $4$-dimensional Ricci-flat ALE space","authors":"Olivier Biquard, Hans-Joachim Hein","doi":"10.4310/jdg/1683307004","DOIUrl":null,"url":null,"abstract":"We introduce a natural definition of the renormalized volume of a $4$-dimensional Ricci-flat ALE space. We then prove that the renormalized volume is always less or equal than zero, with equality if and only if the ALE space is isometric to its asymptotic cone. Currently the only known examples of $4$-dimensional Ricci-flat ALE spaces are Kronheimer’s gravitational instantons and their quotients, which are also known to be the only possible examples of special holonomy. We calculate the renormalized volume of these spaces in terms of Kronheimer’s period map.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/jdg/1683307004","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a natural definition of the renormalized volume of a $4$-dimensional Ricci-flat ALE space. We then prove that the renormalized volume is always less or equal than zero, with equality if and only if the ALE space is isometric to its asymptotic cone. Currently the only known examples of $4$-dimensional Ricci-flat ALE spaces are Kronheimer’s gravitational instantons and their quotients, which are also known to be the only possible examples of special holonomy. We calculate the renormalized volume of these spaces in terms of Kronheimer’s period map.
4维ricci -平坦ALE空间的重整化体积
我们引入了$4$维ricci -平坦ALE空间重归一化体积的自然定义。然后证明重整体积总是小于或等于零,当且仅当ALE空间与其渐近锥等距时,体积等于零。目前唯一已知的4维ricci平面ALE空间的例子是Kronheimer的引力瞬子和它们的商,它们也被认为是唯一可能的特殊完整的例子。我们根据Kronheimer的周期图计算这些空间的重归一化体积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信