Salam K. Al Dawery, Maroa K. Al-Sawai, Ghatara M. S. Al Muzami, Sri Hari K. Annamareddy, Muataz S. Al Dawari, Ramzi H. Harharah, Hamed N. Harharah, Abdelfattah Amari
{"title":"Treatment of Produced Water Using Prepared Activated Carbon-Based Sewage Sludge","authors":"Salam K. Al Dawery, Maroa K. Al-Sawai, Ghatara M. S. Al Muzami, Sri Hari K. Annamareddy, Muataz S. Al Dawari, Ramzi H. Harharah, Hamed N. Harharah, Abdelfattah Amari","doi":"10.3390/separations10100519","DOIUrl":null,"url":null,"abstract":"Removal of organic pollutants and metal ions from produced water by adsorption, using prepared activated carbon (AC) from sewage sludge, with chemical activations using NaOH, KOH and ZnCl2 separately and pyrolysis at different temperatures (500, 600 and 700 °C). Pure sludge and prepared ACs were analyzed using FTIR and XRD. The results showed 18% crystallinity compared to that of commercial AC, which has 44% crystallinity. The results of FTIR demonstrate that the properties of the post-treated affect the final products depending on the method used and that it contains similar functional groups to those present in the commercial AC, but at a higher peak intensity. Adsorption treatments were carried out at 25, 35 and 45 °C solution temperatures. The results showed that the removal of pollutants from produced water using prepared AC with all types of chemical activations reached 99.5%, such as commercial AC with 0.06 g dosage of adsorbent at pyrolysis temperatures of 500 and 600 °C and a solution temperature of 25 °C. The obtained results refer to the mechanism of exothermic reaction and physical adsorption. It was observed that despite the lower dosage of adsorbent of 0.01 g, a sufficient treatment of pollutants was achieved. This reveals the effectiveness of using sewage sludge as a cheap adsorbent. Also, using pure sewage sludge, the adsorption data showed a 95.2% removal of the pollutants. This result indicated that pure sludge has an efficient adsorption capacity and can be utilized as a cheap and environmentally friendly material. For the removal of manganese and cadmium metal ions from the produced water, the resultant data showed that more than 90% of manganese was adsorbed and more than 97% of cadmium was adsorbed, especially when using pure sewage sludge and prepared activated carbon with NaOH chemical activation at pyrolysis temperatures of 500 °C and 600 °C.","PeriodicalId":21833,"journal":{"name":"Separations","volume":"1 1","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/separations10100519","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Removal of organic pollutants and metal ions from produced water by adsorption, using prepared activated carbon (AC) from sewage sludge, with chemical activations using NaOH, KOH and ZnCl2 separately and pyrolysis at different temperatures (500, 600 and 700 °C). Pure sludge and prepared ACs were analyzed using FTIR and XRD. The results showed 18% crystallinity compared to that of commercial AC, which has 44% crystallinity. The results of FTIR demonstrate that the properties of the post-treated affect the final products depending on the method used and that it contains similar functional groups to those present in the commercial AC, but at a higher peak intensity. Adsorption treatments were carried out at 25, 35 and 45 °C solution temperatures. The results showed that the removal of pollutants from produced water using prepared AC with all types of chemical activations reached 99.5%, such as commercial AC with 0.06 g dosage of adsorbent at pyrolysis temperatures of 500 and 600 °C and a solution temperature of 25 °C. The obtained results refer to the mechanism of exothermic reaction and physical adsorption. It was observed that despite the lower dosage of adsorbent of 0.01 g, a sufficient treatment of pollutants was achieved. This reveals the effectiveness of using sewage sludge as a cheap adsorbent. Also, using pure sewage sludge, the adsorption data showed a 95.2% removal of the pollutants. This result indicated that pure sludge has an efficient adsorption capacity and can be utilized as a cheap and environmentally friendly material. For the removal of manganese and cadmium metal ions from the produced water, the resultant data showed that more than 90% of manganese was adsorbed and more than 97% of cadmium was adsorbed, especially when using pure sewage sludge and prepared activated carbon with NaOH chemical activation at pyrolysis temperatures of 500 °C and 600 °C.
期刊介绍:
Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal:
Manuscripts regarding research proposals and research ideas will be particularly welcomed.
Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users.
The scope of the journal includes but is not limited to:
Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.)
Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry)
Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution
Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization