Solving Optimization Problems over the Stiefel Manifold by Smooth Exact Penalty Functions

Pub Date : 2023-10-01 DOI:10.4208/jcm.2307-m2021-0331
Nachuan Xiao and Xin Liu
{"title":"Solving Optimization Problems over the Stiefel Manifold by Smooth Exact Penalty Functions","authors":"Nachuan Xiao and Xin Liu","doi":"10.4208/jcm.2307-m2021-0331","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel penalty model called ExPen for optimization over the Stiefel manifold. Different from existing penalty functions for orthogonality constraints, ExPen adopts a smooth penalty function without using any first-order derivative of the objective function. We show that all the first-order stationary points of ExPen with a sufficiently large penalty parameter are either feasible, namely, are the first-order stationary points of the original optimization problem, or far from the Stiefel manifold. Besides, the original problem and ExPen share the same second-order stationary points. Remarkably, the exact gradient and Hessian of ExPen are easy to compute. As a consequence, abundant algorithm resources in unconstrained optimization can be applied straightforwardly to solve ExPen.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/jcm.2307-m2021-0331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we present a novel penalty model called ExPen for optimization over the Stiefel manifold. Different from existing penalty functions for orthogonality constraints, ExPen adopts a smooth penalty function without using any first-order derivative of the objective function. We show that all the first-order stationary points of ExPen with a sufficiently large penalty parameter are either feasible, namely, are the first-order stationary points of the original optimization problem, or far from the Stiefel manifold. Besides, the original problem and ExPen share the same second-order stationary points. Remarkably, the exact gradient and Hessian of ExPen are easy to compute. As a consequence, abundant algorithm resources in unconstrained optimization can be applied straightforwardly to solve ExPen.
分享
查看原文
用光滑精确惩罚函数求解Stiefel流形上的优化问题
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信