In-situ observation and mechanism of calcium–magnesium–alumina–silicates (CMAS) melts-induced degradation of RE 2SiO 5 (RE = Tb, Dy, Ho, Y, Er, Tm, and Yb) ceramics at 1500 °C
Zhilin Tian, Keyu Ming, Liya Zheng, Zhilin Chen, Fan Zhou, Peng Liu, Zihao Qiu, Donghui Wei, Bin Li, Jingyang Wang
{"title":"In-situ observation and mechanism of calcium&ndash;magnesium&ndash;alumina&ndash;silicates (CMAS) melts-induced degradation of RE <sub>2</sub>SiO <sub>5</sub> (RE = Tb, Dy, Ho, Y, Er, Tm, and Yb) ceramics at 1500 &deg;C","authors":"Zhilin Tian, Keyu Ming, Liya Zheng, Zhilin Chen, Fan Zhou, Peng Liu, Zihao Qiu, Donghui Wei, Bin Li, Jingyang Wang","doi":"10.26599/jac.2023.9220822","DOIUrl":null,"url":null,"abstract":"Rare earth (RE) silicate is one of the most promising environmental barrier coatings for silicon-based ceramics in gas turbine engines. However, CMAS corrosion becomes much more serious and is the critical challenge for RE silicate with the increasing operating temperature. Therefore, it is quite urgent to clarify the mechanism of high-temperature CMAS-induced degradation of RE silicate at relatively high temperatures. Herein, the interaction between RE<sub>2</sub>SiO<sub>5</sub> and CMAS up to 1500<sup>o</sup>C was investigated by a novel high-temperature in-situ observation method. High temperature promotes the growth of the main reaction product (Ca<sub>2</sub>RE<sub>8</sub>(SiO<sub>4</sub>)<sub>6</sub>O<sub>2</sub>) fast along [0 0 1] direction, and the precipitation of short and horizontally distributed Ca<sub>2</sub>RE<sub>8</sub>(SiO<sub>4</sub>)<sub>6</sub>O<sub>2</sub> grains was accelerated during the cooling process. The increased temperature increases the solubility of RE elements, decreases the viscosity of CMAS, and thus elevates the corrosion reaction rate, making RE<sub>2</sub>SiO<sub>5</sub> fast interaction with CMAS and less affected by RE element species.","PeriodicalId":14862,"journal":{"name":"Journal of Advanced Ceramics","volume":null,"pages":null},"PeriodicalIF":18.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Ceramics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26599/jac.2023.9220822","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Rare earth (RE) silicate is one of the most promising environmental barrier coatings for silicon-based ceramics in gas turbine engines. However, CMAS corrosion becomes much more serious and is the critical challenge for RE silicate with the increasing operating temperature. Therefore, it is quite urgent to clarify the mechanism of high-temperature CMAS-induced degradation of RE silicate at relatively high temperatures. Herein, the interaction between RE2SiO5 and CMAS up to 1500oC was investigated by a novel high-temperature in-situ observation method. High temperature promotes the growth of the main reaction product (Ca2RE8(SiO4)6O2) fast along [0 0 1] direction, and the precipitation of short and horizontally distributed Ca2RE8(SiO4)6O2 grains was accelerated during the cooling process. The increased temperature increases the solubility of RE elements, decreases the viscosity of CMAS, and thus elevates the corrosion reaction rate, making RE2SiO5 fast interaction with CMAS and less affected by RE element species.
期刊介绍:
Journal of Advanced Ceramics is a single-blind peer-reviewed, open access international journal published on behalf of the State Key Laboratory of New Ceramics and Fine Processing (Tsinghua University, China) and the Advanced Ceramics Division of the Chinese Ceramic Society.
Journal of Advanced Ceramics provides a forum for publishing original research papers, rapid communications, and commissioned reviews relating to advanced ceramic materials in the forms of particulates, dense or porous bodies, thin/thick films or coatings and laminated, graded and composite structures.